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1 THE SURGING -OMIC ERA
Be careful what you wish for, lest it come true.

W.W. Jacobs, “The Monkey’s Paw”

In the past three decades, advances in molecular biology and high 
throughput platforms have led to an unprecedented number of novel 
findings about genomes, transcriptomes and proteomes. Indeed, we are 
now in the midst of what researchers have described as the “-omics” era. 
The voluminous aggregate of information across various -omic levels 
has created an ever-increasing number of opportunities to establish    
genotype-phenotype associations.

The many discoveries of multiple pathways to diseases and 
disorders from their inferred genetic origins are nothing short of        
breath-taking. The seminal concept of the genotype first presented by 
Johannsen [1], the searches for which many decades later would lead 
to studies of linkage disequilibrium, and from there to GWAS studies 
of SNPs, is lucidly summarized in Altshuler et al. [2]. In its ability to 
sequence many small pieces of DNA in parallel, Next Generation 
Sequencing (NGS), described as the most important tool in medicine 
since X-rays were invented [3], is now the preferred approach by 
which to examine gene expression [4]. In tandem with bioinformatics 
algorithms and protocols to assemble the genetic pieces into a 
complete genome, NGS can now be employed to rapidly detect a wide 
array of genetic abnormalities [5].

Many researchers now maintain that the next step in establishing 
fruitful genotype-phenotype relationships between genetic mutations 
and diseases/disorders will be to develop more thorough descriptions 
of the phenotype—Next Generation Phenotyping [3] or “deep phenotyping” [6]. 
In a somewhat related article, Joober [7] asserts that the most important 
objective of the 1,000 Genomes Project is identify the greatest number 
of rare genetic variants as they relate to neuropsychiatric disorders. 
This would be achieved by selecting a large, representative sample 
of the general population, then partitioning the sample into two 
components: those with rare variants and those without. Given the 
presumed prevalence of rare genetic variants along with other, statistical 
conjectures, Joober [7] asserted that 45,000 participants randomly 
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sampled from the population would suffice, assuming 
that researchers could obtain deep phenotypes of all 
study subjects.

Similarly, Haring and Wallaschofski [8] proposed a 
“systems epidemiology” approach that would integrate 
several levels of -omic databases with additional 
environmental data to construct a multi-dimensional 
network model to aid in predicting causes of health 
and disease. According to these authors, in her 
the protocols and algorithms used to establish  
genotype-phenotype paradigms are robust.

Geschwind and Konopka [4] also suggest a 
systems level approach in neuroscience akin to the 
model presented by Haring and Wallaschofski [8]. 
However, Geschwind and Konopka [4] advocate the 
use of -omics as an exploratory, not confirmatory, 
procedure by which to ascertain genotype-phenotype 
associations related to neuropsychiatric and other 
brain-related disorders.

2 FROM PHENOTYPING TO DEEP 
PHENOTYPING
“When I make a word do a lot of work like that,' said 
Humpty Dumpty, 'I always pay it extra.”

—Lewis Carroll, the author of “Through the Looking Glass”.

To analyze and incorporate the expression deep 
phenotyping into the genotype-phenotype paradigm, 
a brief account of the origin and development of the 
concepts will, hopefully, provide a useful perspective. 
In 1911, Johannsen proposed the concepts of 
gene, genotype, and phenotype. The genotype 
was “the sum total of all genes”, and the phenotype 
evidenced by “direct inspection… or finer measures 
of assessment” of the organism under consideration. 
Embedded in Johannsen’s conception of the 
genotype-phenotype relationship was a model of 
causality: the genotype of the parent transmitted to 
the offspring produced the latter’s phenotype [9].

Concepts of clinical taxonomies—phenotypes—
were developed much earlier, during the 17th and 
18th centuries. The first recorded medical/clinical 
nosological systems were developed by Thomas 
Sydenham [10] and François Bossier de Sauvages de 
Lacroix [11]. The earliest systematic attempt to identify 
causal relationships in psychiatric disorders can be 
traced to the vicar Robert Burton, who published his 
Anatomy of Melancholy in 1621. Burton cataloged 
an assortment of causes of what we would now refer 
to as depression, citing “a heap of accidents” as one 
in particular.

Fast forward to the late 20th century and to the 
International Statistical Classification of Diseases 

and Related Health Problems (ICD-10) [12], a 3-volume 
tome containing 8,000 categories and 3-digit 
alphanumeric category codes; and, to the 21st 
century, in the United States, the Diagnostic and 
Statistical Manual of Mental Disorders-V (DSM-V) [13], 
which contains the most recent updating efforts by 
the American Psychiatric Association to standardize 
and classify all mental disorders. While there 
remain some questionable features of ICD-10 and 
DSM-V taxonomies, their attempts to standardize 
and classify diseases/disorders as completely and 
extensively as possible are much expanded and 
developed versions from earlier depictions of the 
medical phenotypes contained therein.

Other attempts to systematize and refine 
nomenclature in medical genetics were developed 
by John Carey and colleagues and known as the 
Elements of Morphology project. The impetus for 
the project was the apparent need to find a common 
language for phenotypes as they came to be 
associated with newly discovered genes. The objective 
was to standardize terminology in clinical morphology 
and syndromology [14]. Their efforts resulted in the 
publication of a series of six articles targeting specific 
features of the human clinical phenotype [15–20]. With 
its highly detailed descriptions and metrics, Carey 
and his colleagues produced the antecedents of 
what may now be referred to as deep phenotyping. 
A recent update referring to deep phenotyping is 
provided by Carey [21].

At about the same time, Cotton et al. [22] proposed 
the creation of the Human Variome Project (HVP). The 
HVP was a more wide-ranging approach that would 
examine comprehensive and accessible databases of 
neurogenetic disorders as well as incorporate genetic 
information from GWAS studies. Similar to the efforts 
by Carey et al. [14], the aims of the HVP were to adopt 
standards and develop algorithms for assessing the 
pathogenicity of neurogenetic disorders.

Coincident with these approaches, Altshuler et al. [2] 
also suggested that subjects of interest be “deeply 
phenotyped” in order to establish valid genotype-
phenotype relationships. A year earlier, Tracy [6] 
contended that understanding genotype-phenotype 
relationships could be improved by deep phenotyping; 
that a fine-grained depiction of the phenotype would 
act to illuminate the pathways from genotype to 
phenotype. In 2012, a special issue of articles related 
to deep phenotyping as a means by which to attain 
a more precise and comprehensive assessment of 
diseases/disorders was published in Human Mutation. 
Robinson [23] contended that, in order for clinicians to 
make accurate diagnoses—“precision medicine”—
a complete and comprehensive understanding 
of the features of any disease/disorder—a deep 
phenotype—was essential. Robinson [23] cited the 
Human Phenotype Ontology (HPO) group project 
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(updated in Kohler et al. [24], which had collected more 
than 10,000 terms by which abnormal phenotypes 
could be described, that was superior to earlier 
bioinformatics tools [25], and could be used to link a 
given phenotype to disease genes [26,27].

Another effort to implement the use of deep 
phenotyping has been to standardize and utilize 
Electronic Health Records (EHR) to make available 
the mountains of clinical data stored therein to further 
elaborate and refine understanding of the causal 
mechanisms of diseases/disorders. Frey et al. [28] 
suggest that, by combining genomic data with deep 
phenotyping, bioinformatics algorithms could then 
identify, extract and cluster together the many salient 
features of the disease/disorder phenotype from EHRs 
and assess the diagnostic accuracy—its sensitivity and 
specificity—of the genetic abnormalities. Frey et al. [28] 
also proposed that the HPO terminology database be 
employed to identify categories of disease/disorder 
phenotypes reliably.

Longitudinal clinical deep phenotyping is purported 
to have been the source of several successes. For 
example, Chawes et al. [29] were able to identify cord 
blood Vitamin D deficiency in pregnant mothers as a 
causal factor of asthma- and allergy-related illnesses 
in pre-school age offspring. Deep phenotyping has 
also been alluded to as the best method by which to 
provide genetic counseling to women impregnated 
by In Vitro Fertilization (IVF) as to the most likely 
successful outcome of the procedure [30]. Results 
from their Receiver Operating Curve (ROC) analysis 
of the data showed that the 52-variable model 
employed by these researchers produced greater 
accuracy as measured by the Area Under the Curve 
(AUC) compared to the older, Templeton model 
(80% vs. 68%). In studies using mouse models of 
Huntington’s disease, Alexandrov et al. [31] found 
that by deeply phenotyping complex changes in 
behavior, they were able to predict more accurately 
the relationship between Cytosine-Adenine-Guanine 
(CAG) length and age of onset than did the simpler 
linear model of Age of onset regressed on CAG 
length alone. Using their proprietary software and 
machine-learning algorithms, Ruderfer and Dudley [32] 
found a set of approximately 200 behavioral features 
which accurately predicted the length of CAG 
repeats in strains of mice with the huntingtin gene.

3 THE LAW OF UNINTENDED 
CONSEQUENCES: PROBLEMS 
WITH BIG DATA
“Human beings are complex and dangerous creatures.”
—Andre Gregory, the actor in “My Dinner with Andre”

Given the enormous complexity of the genome and 
phenotype, Altshuler et al. [2] cautioned that there 
may be built-in limitations to researchers’ abilities 
to establish valid genotype-phenotype relationships 
because of the need to examine extremely large 
samples of disease and non-disease cohorts. Sewell  
Wright [33] first acknowledged the problem where 
there exists a “complex of interacting, uncontrollable, 
and often obscure causes”. Similarly, the number of 
opportunities big data has for making errors increases 
markedly as the size of the database increases. 
Kohane et al. [34] referred to such events as the 
“incidentalome”, which threatens to undermine the 
-omic revolution. 

As -omic databases become increasingly 
elaborate, massive and multiplex, and a growing 
number of common mutations—insertions, deletions, 
inversions, duplications—and variants in general found, 
questions arise as to which of the many common 
variants may have been identified correctly as the 
causal mechanisms for a disease/disorder, how many 
might have been falsely identified, and how many 
might have been missed. As an example, Kohane 
et al. [35] cited the publication of James Watson’s 
genome, which contains variants known for producing 
congenital disorders, none of which were diagnosed 
for Watson.

False identification problems associated with 
multiple comparisons identifying statistically significant 
associations of specific genotypes with diseases/
disorders has been known for decades (See, for 
example, Austin et al. [36]). Solutions for controlling 
experimentwise Type I errors or false discovery rates 
(FDRs) in genomic and other big data sets range from 
the conservative procedures established by Bonferroni 
and Sidak et al. [37] to the more recently developed 
adjustments of FDRs [38–40] and posterior error 
probabilities [41]. Unfortunately, the more conservative 
procedures incur a substantial loss of power, 
while FDR methods are perceived as a tolerable 
compromise between inflated, unadjusted Type I 
experimentwise errors and the conservative, e.g., 
Bonferroni approach [39].  It should also be noted that 
some FDR methods for simulating null distributions are 
more limited than others in correctly identifying genes 
correlated with a phenotype [42]. Whatever method 
is employed, the most reliable course to follow has 
always been replication [43]. Unfortunately, this would 
involve additional considerable cost and time needed 
to recruit participants, and would not likely be fundable.

Recent studies of the actual levels of FDRs have 
raised additional concerns. Jager and Leek [44] examined 
p-values from five prestigious medical journals dating 
from 2000 to 2010 and found the “science-wise” rate 
of FDRs was 14%, a pronounced increase above the 
anticipated 5% level. Nonetheless, other discussants 
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of the article by Jager and Leek [44] examined their 
data and found substantially higher rates. By raising 
the p-value threshold a trifle from p < 0.05 to p ≤ 0.05, 
Benjamini and Hechtlinger [45] estimated the science-
wise FDR at 20.5%. Ioannidis [46] noted many other 
concerns related to the results obtained by Jager 
and Leek [44]; specifically, the variability of false 
positive (FP) rates across research areas and among 
study designs, a failure to acknowledge bias in the 
publications examined, bias in the selection of p-values 
from abstracts, and bias resulting from the highly 
select nature of the journals chosen for the sample. 
As Benjamini and Hechtlinger [45] remarked, “Modern 
science faces the problem of selection of promising 
findings from the noisy estimates of many” [45]. What 
is more, while these authors also note that these 
issues are often addressed in studies of genomics, 
proteomics and neuroimaging, the hazards associated 
with examining many thousands of parameters 
requires further, continual vigilance.

Despite its many strengths as a prototypical deep 
phenotype database, the HPO terminology website [47] 
contains a number of omissions and misstatements 
that could affect an accurate determination of a 
genotype-phenotype linkage, especially terms 
associated with neuropsychiatric and brain-related 
disorders. For example, a search of the term, 
“intellectual disability” (ID) produced the following: 
“Subnormal intellectual functioning which originates 
during the developmental period… defined as an 
IQ score below 70”. This is only partly correct. ID 
may appear (DSM says “occur”) during post-natal 
development, but more likely have its etiology in 
genetics or prenatal neurodevelopment. According 
to DSM, the developmental period extends from 
childhood to adolescence, after which such deficits 
should be diagnosed as a “neurocognitive disorder”. 
The definition of intellectual disability is also more 
elaborate, and requires the child to have “deficits or 
impairments in adaptive behavior” as measured by 
“standardized, culturally appropriate tests”. In the 
Synonyms section, the term, “mental handicap”, an 
expression often used by European pediatricians and 
child psychiatrists, is not included. A search of the 
term Learning Disability brings the reader to Specific 
Learning Disability. Under Synonyms, no terms are 
found. Yet, learning disability is often referred to as 
borderline ID, a term not listed in the HPO. Many 
genotypes for ID are listed, but Jacobsen Syndrome, 
generated by deletion 11q24–25, which produces 
both borderline disability and ID, is not listed as a 
possible genetic cause.

Clinical studies making use of deep phenotyping 
may undergo other, methodological challenges. For 
example, the study by Chawes et al. [29], recruited only 
mothers diagnosed with asthma. As Holland [48] once 

remarked, it takes two causes to define an effect: the 
treatment and the control. A prospective cohort study 
that included a control group of Vitamin-D deficient 
mothers without asthma would have reduced the 
possible bias in the results. The IVF study by Banerjee 
et al. [30] used a cross-validation procedure to identify 
significant predictor variables from the 52-variable 
set. However, these researchers found that 21 of 
the 52 variables in the training set were significantly 
different from those found in the validation data 
set, indicating that the factors predicting sources 
of variation in IVF outcome produced two markedly 
different models for the training and validation sets. 
Also, there was no indication as to whether the AUC 
from the Banerjee model (80%) was statistically 
significantly different from the Templeton model (68%), 
or if there was no overlap in the confidence intervals of 
the AUC percent estimates between the two models. 
In their study using a mouse model to examine 
deep phenotyping in Huntington’s disease, Ruderfer 
and Dudley [32] identified a set of approximately 200 
behavioral variables to accurately predict CAG length. 
Having measured 3,086 behavioral features in mice 
with the Huntington mutation, Alexandrov et al. [31] 

found they required more than 200 variables to predict 
more accurately (R2 = 90%) CAG length. However, 
in an earlier, large multicenter study of 3,452 human 
participants, Langbehn et al. [49] found their simpler 
logistic regression model—as opposed to the traditional 
proportional hazards model—very accurately predicted 
age of onset of Huntington’s disease, using only 
CAG repeats as the predictor variable.

Prediction accuracy of diagnostic assessment 
often uses the ROC by constructing a scatterplot 
of the sensitivity [true positive (TP) rate] and false 
positive (FP) rate. When TP = FP, assignment to 
either category is equally likely, and the AUC is 50%. 
When TP is much greater than FP, the area under 
the curve becomes increasingly large, approaching 
100%—the diagnostic instrument is highly sensitive 
and specific in detecting an abnormality. In their study 
relating gene expression to phenotypic data, Feiglin 
et al. [50] integrated 6,665 transcriptomes derived from 
tissues with 3,397 diseases. These investigators 
found only relatively weak genotype-phenotype 
associations between levels of expression and 
phenotype, with a maximum AUC = 0.69. Differences 
between patients with Alzheimer’s disease and 
non-disease controls based their respective gene 
expression for a specific SNP type as a basis for 
future diagnosis were described by Geschwind 
and Konopka [4]. In their Fig. 1 [4] in which genetic 
polymorphism was correlated with gene expression, 
there is a large overlap—false positive and false 
negative—in the gene expression variability between 
SNP types for patients with Alzheimer’s disease 
compared to controls.
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Clustering procedures employed by algorithms 
and based on “meaningfulness” of terms can be 
problematic, as Google and Facebook have discovered 
to their dismay. In their study of deep phenotyping 
serious mental illness, Jackson et al. [51] found that 
clinicians often used the same terms in different 
ways, and that clustering techniques used to identify 
meaningfulness may not establish reliable diagnoses. 
Using SNOMED CT mapping (an organized 
system of medical and related terms for clinical 
documentation and reporting), 557 curated concepts 
by 2 expert psychiatrists produced a probability-
adjusted kappa coefficient of agreement of қ = 0.45, 
which is relatively modest.

Integrating EHR deep phenotyping with -omic 
data also presents challenges. Some information 
written into EHRs is incorrect. Clinical terms reported 
at different points in time or in different epochs may 

Fig. 1 Four examples of complex genotype-phenotype pathways: (a) the Phenotype (P) is contingent upon 
Genetic (G) factors, Intermediate Phenotype (IP) factors, Background (B) factors, and Unknown (U) factors. 
In addition, G and IP factors are contingent upon B and U, and, G is contingent upon U and B. (b) The same 
model as in (a), except P is not contingent upon U. (c) The same model as in (a), except G is not contingent 
upon U. (d) The same as in (a), except (IP) is not contingent upon (G).

not have the same connotation, but may result in 
being clustered together. However, Son et al. [52] 

used EHR-Phenolyzer, an algorithm for extracting 
and analyzing phenotypes from heterogeneous EHR 
narratives. Results from their phenotypic analyses 
identified genes associated with confirmed monogenic 
disorders in 16/28 patients assessed.

Sometimes information is missing. Filtering EHRs 
containing large numbers of quantitative and qualitative 
information will also prove demanding. According 
to Hripcsak and Albers [53], Columbia University’s 
database contains 136,035 different concepts. As 
Hripcsak and Albers [53] observe, data may be biased, 
particularly when dealing with neuropsychiatric or 
neurodevelopmental disorders. The CDC computes 
its prevalence of autism spectrum disorders (ASD) 
based on medical, clinical, and school records. 
However, there is much anecdotal evidence to 



Deep Phenotyping Methodology in NeuropsychiatryGene S. Fisch

JPBS  2018; 3(6): 11 | Email: jpbs@hapres.com                                                                                                   December 5, 20186

suggest that pediatricians, child psychiatrists and 
psychologists, as well as nurses and other clinicians, 
have been pressured by parents to assign a 
diagnosis of ASD rather than ID or learning disability, 
and for various reasons. Such recorded information 
would erroneously inflate the prevalence of ASD in 
the population, not to mention undermine attempts to 
ascertain valid genotype-phenotype relationships.

As this latter example suggests, developing a 
proper taxonomic system of neuropsychiatric and 
neurobehavioral disorders can be quite demanding 
and controversial, and has been for many years. In 
order to identify their genetic origins, Kendler [54,55] has 
argued that psychiatric nosology be systematized 
in such a way that the diagnostic criteria used to 
classify disorders produce both high sensitivity 
(TP) and high specificity (TN). To that end, the 
DSM manual continually updates the set of criteria 
it uses to increase diagnostic accuracy for specific 
psychiatric disorders. Unfortunately, DSM revisions 
have had unintended consequences. For example, 
ASD as currently defined was originally classified 
as Childhood Schizophrenia, the latter diagnosis of 
which persisted until DSM-III was published in 1980. 
In addition, one of the criteria—age of onset—has 
been modified several times in the past 40 years. In 
DSM-III [56] age of onset was set as prior to 30 months; 
in DSM-IIIR [57], it was increased to 36 months; in 
its most recent incarnation, “individuals with ASD 
must show symptoms from early childhood, even if 
those symptoms are not recognized until later” [13]. 
Moreover, over the last 50 years, each time DSM 
criteria for ASD have been revised, the prevalence of 
the disorder shifts noticeably upward [58].

Additional and often neglected sets of factors 
in genotype-phenotype models affecting diseases/
disorders are stochastic factors related to human 
development, and to exogenous environmental 
factors. A meta-analysis of twin studies of diseases/
disorders over the past half century has again shown 
that genetic contributions to psychiatric and behavioral 
disorders have a high heritability rate, based on 
strong correlations of disorders among monozygotic 
twins [59]. However, high heritability may not translate 
into consistent genetic models of causality [60,61]. The 
complexity of the phenotype likely increases with 
the individual’s age as a result of the extent to which 
other genes have had time to interact with the genetic 
cause. In that regard, Polderman et al. [59] found that 
correlations decrease as twins age, suggesting that 
there are important developmental and/or environmental 
components modifying many neuropsychiatric and 
behavioral disorders. It should be noted that, in their 
study of deep phenotyping, Stepniak et al. [62] found that 
environmental but not genetic factors were significantly 
associated with early onset schizophrenia.

These  las t  r emark s  pr ov ide  addi t ional 
methodological complications that will influence how 
deep phenotyping of neuropsychiatric disorders can 
be used successfully to ascertain genetic causes. 
As a consequence, current models that have applied 
various -omic levels with deep phenotyping may well 
be incomplete. In discussing features of his path 
models, Wright [33] was prescient in anticipating that 
there may be multiple paths other than the known or 
suspected factors producing the phenotype.

One approach that had been proposed to identify 
novel genotype-phenotype pathways was the concept 
of the endophenotype proposed by Gottesman and 
Shields [63]. These authors suggested that a well-defined 
and quantifiable intermediate phenotype could be used 
to elucidate the causal path from genetic sources to 
the phenotype, schizophrenia. In this -omic era, strata 
containing transcriptomes and/or proteomes could be 
considered as intermediate phenotypes. However, as 
noted earlier, introducing intermediate phenotypes into 
causal modeling will invariably complicate the process 
of identifying authentic genotype-phenotype pathways. 
Moreover, as Cox and Wermuth [64] note, the presence 
of unidentified “lurking” variables in observational 
studies, the absence of which may inadvertently affect 
the interpretation of observed relationships, will have 
an adverse effect on the causal model constructed.

The causal models in Fig. 1 illustrate four 
possible complications that may arise in constructing a 
causal model when there are unidentified confounding 
factors. In Fig. 1(a), the unidentified variables (U) are 
contained within the background factors (B), but also 
directly affect the phenotype (P), the intermediate 
phenotype (IP), and genotype (G). Fig. 1(b) illustrates 
the same relationships of U with IP and G, but not 
P. Fig. 1(c) exemplifies a causal model in which U 
influences P and IP, but is unrelated to G. The fourth 
figure characterizes a causal model in which U 
influences G, IP, P, but the genetic factor, G, is not.

4 SUMMARY AND CONCLUSION
While it is clear that the -omics era has introduced 
many new technologies across several levels of 
biological strata that could eventually lead to important 
findings about the complex nature of the genotype 
and its various intermediate phenotypes, it is as 
important to remember that by incorporating deep 
phenotyping into the genotype-phenotype causal 
models in neuroscience, researchers remain mindful 
of the complications these many intricacies entail. 
Moreover, it is imperative that researchers be attentive 
to the details and possible sources of error contained 
in the various causal models that can be constructed 
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before deciding which would be the most appropriate 
model to evaluate the data collected. This should 
be the case especially in studies employing deep 
phenotypes for neurobehavioral and neuropsychiatric 
disorders. Unlike experiments in which study 
environments are controlled, causes manipulated, 
and subsequent outcomes observed and measured, 
observational studies in which causal inferences 
are drawn post hoc from the data collected are 
prone to bias and false discoveries inherent in the 
enterprise. And those factors will most certainly affect 

the reliability and validity of the genotype-phenotype 
relationships constructed. Consequently, researchers 
should probably consider their chosen causal models 
as exploratory tools.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1. Johannsen W. The genotype conception of 

heredity. Am Nat. 1911; 45: 129-159.

2. Altshuler D, Daly MJ, Lander ES. Genetic mapping 
in human disease. Science. 2008; 322: 881-888.

3. Hennekam RC, Biesecker LG. Next-generation 
sequencing demands next-generation phenotyping. 
Hum Mutat. 2012; 33: 884-886.

4. Geschwind DH, Konopka G. Neuroscience in the 
era of functional genomics and systems biology. 
Nature. 2009; 461(7266): 908-915.

5. Behjati S, Tarpey PS. What is next generation 
sequencing? Arch Dis Child Educ Pract Ed. 
2013; 98: 236-238.

6. Tracy RP. 'Deep phenotyping': characterizing 
populations in the era of genomics and systems 
biology. Curr Opin Lipidol. 2008; 19: 151-157.

7. Joober R. The 1000 Genomes Project: deep 
genomic sequencing waiting for deep psychiatric 
phenotyping. J Psychiatry Neurosci. 2011; 36: 
147-149.

8. Haring R, Wallaschofski H. Diving through the 
"-omics": the case for deep phenotyping and 
systems epidemiology. OMICS. 2012; 16: 231-234. 

9 . Fisch GS. Whither  the genotype-phenotype 
relationship? An historical and methodological 
appraisal. Am J Med Genet. 2017; 175C: 343-353.

10. Sydenham T. Observationes Medicae. 3rd ed. 
London (UK): Typis A. C. Impensis Gualteri 
Kettilby; 1676.

11. de Sauvages FB. Nosologia Methodica, Scientific 
illnesses Classes, Genera, Species (1763) 
(French). Whitefish (US): Kessinger Publishing, 
LLC; 2009.

12. World Health Organization. International Statistical 
Classification of Diseases and Related Health 
Problems (ICD-10). Geneva: World Health 
Organization; 2008.

13. American Psychiatric Association. Diagnostic 
and statistical manual of mental disorders. 
5th ed. Arlington, VA: American Psychiatric 
Association; 2013.

14. Carey JC, Allanson JE, Hennekam RC, Biesecker 
LG. Standard terminology for phenotypic variations: 
the elements of morphology project, its current 
progress, and future directions. Hum Mutat. 2012; 
33: 781-786.

15. Allanson JE, Cunniff C, Hoyme HE, McGaughran 
J, Muenke M, Neri G. Elements of morphology: 
standard of terminology for the head and face. Am 
J Med Genet Part A. 2009; 149A: 6-28.

16. Biesecker LG, Aase JM, Clericuzio C, Gurrieri F, 
Temple IK, Toriello H. Elements of morphology: 
standard terminology for the hands and feet. Am 
J Med Genet Part A. 2009; 149A: 93-127.

17. Hall BD, Graham JM Jr, Cassidy SB, Opitz JM. 
Elements of morphology: standard terminology 
for the periorbital region. Am J Med Genet Part A. 
2009; 149A: 29-39.

18. Carey JC, Cohen MM Jr, Curry CJR, Devriendt K, 
Holmes LB, Verloes A. Elements of morphology: 
standard terminology for the lips, mouth, and 
oral region. Am J Med Genet Part A. 2009; 
149A: 77-92.

19. Hennekam RCM, Cormier-Daire V, Hall J, M´ehes K, 
Patton M, Stevenson R. Elements of morphology: 
standard terminology for the nose and philtrum. 
Am J Med Genet Part A. 2009; 149A: 61-76.

20. Hunter AG, Frias J, Gillessen-Kaesback G, Hughes 
H, Jone K, Wilson L. Elements of morphology: 
standard terminology for the ear. Am J Med Genet 
Part A. 2009; 149A: 40-60.

21. Carey JC. Phenotype analysis of congenital 
and neurodevelopmental disorders in the next 
generation sequencing era. Am J Med Genet C. 
2017; 175: 320-328.



Deep Phenotyping Methodology in NeuropsychiatryGene S. Fisch

JPBS  2018; 3(6): 11 | Email: jpbs@hapres.com                                                                                                   December 5, 20188

22. Cotton RG, Auerbach AD, Axton M, Barash CI, 
Berkovic SF, Brookes AJ, et al. The Human Variome 
Project. Science. 2008; 322(5903): 861-862. 

23. Robinson PN. Deep phenotyping for precision 
medicine. Hum Mutat. 2012; 33: 777-780.

24. Köhler S, Vasilevsky NA, Engelstad M, Foster E, 
McMurry J, Aymé S, et al. The Human Phenotype 
Ontology in 2017. Nucleic Acids Res. 2017; 
45(D1): D865-D876.

25. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken 
S, Ott CE, et al. Clinical diagnostics in human 
genetics with semantic similarity searches in 
ontologies. Am J Hum Genet. 2009; 85: 457-464.

26. Robinson PN, Köhler S, Bauer S, Seelow D, Horn 
D, Mundlos S. The Human Phenotype Ontology: a 
tool for annotating and analyzing human hereditary 
disease. Am J Hum Genet. 2008; 83: 610-615.

27. Robinson PN, Mungall CJ, Haendel M. Capturing 
phenotypes for precision medicine. Cold Spring 
Harb Mol Case Stud. 2015; 1(1): a000372.

28. Frey LJ, Lenert L, Lopez-Campos G. EHR Big 
Data Deep Phenotyping. Contribution of the 
IMIA Genomic Medicine Working Group. Yearb 
Med Inform. 2014; 9: 206-211.

29. Chawes BL, Bønnelykke K, Jensen PF, Schoos 
AM, Heickendorff L, Bisgaard H. Cord blood 
25(OH)-vitamin D deficiency and childhood 
asthma, allergy and eczema: the COPSAC2000 
birth cohort study. PLoS One. 2014; 9(6): e99856.

30. Banerjee P, Choi B, Shahine LK, Jun SH, O'Leary 
K, Lathi RB, et al. Deep phenotyping to predict 
live birth outcomes in in vitro fertilization. Proc 
Natl Acad Sci U S A. 2010; 107: 13570-13575.

31. Alexandrov V, Brunner D, Menalled LB, Kudwa 
A, Watson-Johnson J, Mazzella M, et al. Large-
scale phenome analysis defines a behavioral 
signature for Huntington's disease genotype in 
mice. Nat Biotechnol. 2016; 34: 838-844.

32. Ruderfer DM, Dudley JT. Deep phenotyping 
predicts Huntington's genotype. Nat Biotechnol. 
2016; 34: 823-824.

33. Wright S. Correlation and causation. J Agric Res. 
1921; 20: 521, 557-585.

3 4 . Kohane  IS,  Masys  DR, A l tman RB. The 
incidentalome: a threat to genomic medicine. 
JAMA. 2006; 296: 212-215.

35. Kohane IS, Hsing M, Kong SW. Taxonomizing, 
sizing, and overcoming the incidentalome. Genet 
Med. 2012; 14: 399-404. 

36. Austin PC, Mamdani MM, Juurlink DN, Hux JE. 
Testing multiple statistical hypotheses resulted 

in spurious associations: a study of astrological 
signs and health. J Clin Epidemiol. 2006; 59: 
964-969.

37. Blakesley RE, Mazumdar S, Dew MA, Houck PR, 
Tang G, Reynolds CF 3rd, et al. Comparisons 
of methods for multiple hypothesis testing in 
neuropsychological research. Neuropsychology. 
2009; 23: 255-264.

38. Benjamini Y, Hochberg Y. Controlling the false 
discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc Ser B. 1995; 57: 
289-300.

39. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani 
I. Controlling the false discovery rate in behavior 
genetics research. Behav Brain Res. 2001; 125: 
279-284.

40. Storey JD, Tibshirani R. Statistical significance for 
genomewide studies. Proc Natl Acad Sci U S A. 
2003; 100: 9440-9445. 

41. Käll L, Storey JD, MacCoss MJ, Noble WS. 
Posterior error probabilities and false discovery 
rates: two sides of the same coin. J Proteome 
Res. 2008; 7: 40-44. 

42. Gamazon ER, Huang RS, Dolan ME, Cox NJ, Im 
HK. Integrative genomics: quantifying significance 
of phenotype-genotype relationships from multiple 
sources of high-throughput data. Front Genet. 
2013; 3: 202.

43. van den Oord EJ. Controlling false discoveries 
in genetic studies. Am J Med Genet B 2008; 
147B(5): 637-644. 

44. Jager LR, Leek JT. An estimate of the science-
wise false discovery rate and application to the 
top medical literature. Biostatistics. 2014; 15: 1-12. 

45. Benjamini Y, Hechtlinger Y. Discussion: An 
estimate of the science-wise false discovery rate 
and applications to top medical journals by Jager 
and Leek. Biostatistics. 2014; 15: 13-16. 

46. Ioannidis JP. Discussion: Why "An estimate of the 
science-wise false discovery rate and application 
to the top medical literature" is false. Biostatistics. 
2014; 15: 28-36, discussion 39-45.

47. Human phenotype ontology. Available online: 
https://hpo.jax.org/app/ (accessed on 28 Nov 2018).

48. Holland PW. Statistics and Causal Inference. J 
Am Stat Assoc. 1986; 81(396): 945-960.

49. Langbehn DR, Brinkman RR, Falush D, Paulsen 
JS, Hayden MR; International Huntington's 
Disease Collaborative Group. A new model for 
prediction of the age of onset and penetrance for 
Huntington's disease based on CAG length. Clin 
Genet. 2004; 65: 267-277.

https://hpo.jax.org/app/


Deep Phenotyping Methodology in NeuropsychiatryGene S. Fisch

JPBS  2018; 3(6): 11 | Email: jpbs@hapres.com                                                                                                   December 5, 20189

50. Feiglin A, Allen BK, Kohane IS, Kong SW. 
Comprehensive Analysis of Tissue-wide Gene 
Expression and Phenotype Data Reveals Tissues 
Affected in Rare Genetic Disorders. Cell Syst. 
2017; 5: 140-148.

51. Jackson R, Patel R, Velupillai S, Gkotsis G, 
Hoyle D, Stewart R. Knowledge discovery for 
Deep Phenotyping serious mental illness from 
Electronic Mental Health records. F1000Res. 
2018; 7: 210.

52. Son JH, Xie G, Yuan C, Ena L, Li Z, Goldstein A, 
Huang L, et al. Deep Phenotyping on Electronic 
Health Records Facilitates Genetic Diagnosis by 
Clinical Exomes. Am J Hum Genet. 2018; 103: 58-73.

53. Hripcsak G, Albers DJ. Correlating electronic 
health record concepts with healthcare process 
events. J Am Med Inform Assoc. 2013; 20(e2): 
e311-e318. 

54. Kendler K. Toward a scientific psychiatric nosology. 
Strengths and limitations. Arch Gen Psychiatry. 
1990; 47: 969-973.

55. Kendler K. Reflections on the relationship between 
psychiatric genetics and psychiatric nosology. Am 
J Psychiatry. 2006; 163: 1138-1146.

56. American Psychiatric Association. Diagnostic and 
statistical manual of mental disorders. 3rd ed. 
Arlington, VA: American Psychiatric Association; 1980.

57. American Psychiatric Association. Diagnostic 
and statistical manual of mental disorders. 3rd 
ed. Revised. Arlington, VA: American Psychiatric 
Association; 1987.

58. Fisch GS. Nosology and epidemiology in autism: 
Classification counts. Am J Med Genet C. 2012; 
160C: 91-103.

59. Polderman TJ, Benyamin B, de Leeuw CA, 
Sullivan PF, van Bochoven A, V isscher PM, et al.  
Meta-analysis of the heritability of human traits 
based on fifty years of twin studies. Nat Genet. 
2015; 47(7): 702-709.

60. Geschwind DH. Autism: Many genes, common 
pathways? Cell. 2008; 135: 391-395.

61. Szatmari P, Maziade M, Zwaigenbaum L, 
Mérette C, Roy MA, Joober R, et al. Informative 
phenotypes for genetic studies of psychiatric 
disorders. Am J Med Genet Part B. 2007; 144B: 
581-588.

62. Stepniak B, Papiol S, Hammer C, Ramin A, Everts 
S, Hennig L, et al. Accumulated environmental 
risk determining age at schizophrenia onset: a 
deep phenotyping-based study. Lancet Psychiatry. 
2014; 1: 444-453. 

63. Gottesman II, Shields J. Genetic theorizing and 
schizophrenia. Br J Psychiatry. 1973; 122: 15-30.

64. Cox DR, Wermuth N. Causality: A statistical view. 
Int Stat Rev. 2004; 72: 285-305.


