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ABSTRACT
Autism spectrum disorder (ASD) is a complex neurodevelopment 
disorder caused by genetic and environmental factors. Animal models 
of autism could help to explore the cellular and molecular mechanisms 
underlying the pathogenesis and treatment approaches of this disease. 
Environmental enrichment has been demonstrated to exert beneficial 
effects in wild-type rodents as well as animal models of various 
neurological and psychiatric disorders. Here we review the findings 
about the effect of environmental enrichment on animal models of 
autism. Generally, environmental enrichment results in less anxiety-
like behavior, reduces repetitive behavior and the deficits in social and 
cognitive behaviors. Environmental enrichment therefore appears to 
be an effective model for non-pharmacological intervention in autism 
therapy.
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1 INTRODUCTION OF AUTISM
Autism spectrum disorder (ASD) is a complex neurodevelopment 
disorder, characterized by core features of impairments in social 
interaction and communication, and repetitive and stereotyped 
behaviors [1], along with some co-occurring symptoms such as sleeping 
disorder, anxiety and aggression [2]. The exact etiology of autism 
remains unclear. Numerous studies on twins and siblings found a 
more than 90 % concordance rates in monozygotic twins [3,4], as 
compared with 0 - 10 % in dizygotic twins [3,4] and 3 - 14 % in siblings 
[5-7], which revealed the contribution of genetic factors to this disorder. 
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Using genetic techniques such as linkage studies, 
association studies and chromosomal studies, 
many genetic variations linked to autism have been 
identified, including several replicated susceptibility 
loci, maternal 15q11-13 duplications and mutations 
in the synaptic genes such as NRXN1, NLGN3, 
NLGN4 and SHANK3 [8]. Some human syndromes 
resulted from genetic alteration also display autistic 
symptoms, such as Rett syndrome (a mutation in 
MECP2) and Fragile X syndrome (CGG repeats) 

[9,10]. Besides genetic factors, several environmental 
factors might also contribute to the development 
of autism, including prenatal viral infection, zinc 
deficiency, prenatal and perinatal stress, prenatal 
exposure to toxins such as valproic acid (VPA) and 
thalidomide [11].

Currently there is no effective pharmacological 
therapy for the core symptoms of impairments in 
social interaction and communication in autism. 
Despi te the many potent ia l  therapy targets 
suggested by basic neuroscience researches, there 
are only two FDA-approved medicine for autism, 
risperidone and aripiprazole [12]. Both of them are 
aimed at treating irritability in autism, including 
tantrums, aggression and self-injury, but not the 
core features [13]. On the other hand, early behavioral 
interventions are currently the only well-established 
and effective treatment for autistic children [14-16]. 
Usually provided through special programs, these 
interventions use principles and procedures from 
Applied Behavior Analysis to provide intensive skill-
oriented training sessions to help children to develop 
adaptive and functional skills.

Stud ies  us ing s t ruc tura l  and funct iona l 
imaging techniques have revealed neurobiological 
abnormalities of the autistic brains [17]. Magnetic 
resonance imaging (MRI) scans found an abnormal 
overgrowth of the autistic brain during infancy 
and early chi ldhood [18].  Magnetic resonance 
spectroscopic imaging revealed brain chemical 
abnormalities in autistic children aged at 3-4, 
showing a reduced concentrations of neuron-related 
molecules such as N-acetylaspartate, creatine, 
and myoinositol [19]. Post mortem studies found 
decrease in Purkinje neurons and cerebral cortex 
dysgenesis in autistic brains [17]. However, although 
these noninvasive imaging techniques and post 
mortem studies could reveal some structural and 
functional abnormalities of autistic brains, it is difficult 
to use these techniques to investigate the detailed 
molecular pathogenesis of this disease [20]. On the 
other hand, experimental animal models, which allow 
invasive studies, provide opportunities to explore 
the detailed cellular and molecular mechanisms 
under ly ing the pathogenesis and t reatment 
approaches of this disease [21]. 

Several genetic and non-genetic rodent models have 
been developed to mimic human autistic symptoms. 
According to Nestler, et al, an effective animal model 
of neuropsychiatric disorder should meet three 
criteria of validity: face validity (which refers that the 
model resembles important features of the human 
disease), construct or etiologic validity (which refers 
that the model is constructed in a way that causes 
the disease in humans), and predictive validity (which 
refers that effective treatment in humans should also 
be effective on the animal models) [20]. Animal models 
of autism are commonly generated based on the 
etiology of autism, either by genetic manipulation to 
induce genetic variations that are observed in human 
autism patients, or by exposing the pregnant animals 
to certain chemicals that are known to induce autism 
in human [9]. Some inbred mouse strains expressing 
phenotypes relevant to autism are also used as 
autism models [22]. 

Although it is helpful to employ animal models 
of  aut ism to study the detai led mechanism 
underlying behavioral intervention therapy, it is 
difficult to model the behavioral therapies in animals. 
Environmental enrichment is a common non-
pharmacological treatment used in animal models 
of developmental and degenerative disorders, and 
was approximately used as a model of human early 
behavioral intervention [23,24]. The following part of 
this review summarized the findings about the effect 
of environmental enrichment on some commonly 
used experimental autism models. We reviewed the 
approach of carrying out enriched environmental 
stimulation in autism models, the beneficial outcome 
and the neurobiological changes after intervention. 
Behavioral intervention is currently the only 
effective treatment of autism, and these studies in 
animal models may help better understanding the 
mechanism underlying the therapeutic processes.

2 EFFECT OF ENVIRONMENT IN 
AUTISM MODELS
Environmental enrichment refers to the addition of 
objects to the animals’ environment which increases 
levels of novelty and complexity and enhances 
sensory stimulation, cognitive activity and physical 
exercise [25]. Various approaches are used to provide 
environmental enrichment to animals. One approach 
is to use physical enrichment by rearing animals in 
enriched cages, including lager space, equipments 
to climb and explore, toys of different color, shape 
and texture, and novelty (materials presented in 
cages are changed on schedule). Another approach 
is to use social enrichment, in which multiple animals 



Animal Models of AutismYing Xiao 

JPBS  2017, 2(6); 2 | Email: jpbs@qingres.com                                                                                                  December 25, 20173

are induced to facilitate social interaction. 

In wild type rodents, environmental enrichment 
enhances learning and memory, reduces aging 
related memory decline, possibly through its 
effects on synaptic plasticity and hippocampal 
neurogenesis [26]. Environmental enrichment has 
also been demonstrated to exert beneficial effects 
in animal models of various neurological and 
psychiatric disorders, including Huntington’s disease, 
Alzheimer’s disease, Parkinson’s disease, stroke, 
depression, etc. [26,27]. Here we summarized the 
current studies about the effect of environmental 
enrichment on animal models of autism.

2.1 Effect of environmental 
enrichment on autism models 
generated by genetic manipulation

2.1.1 Fragile X syndrome models
Fragile X syndrome is a common genetic disorder 
which causes mental retardation. It is caused by a 
CGG trinucleotide expansion (greater than 200 CGG 
repeats) in the fragile X mental retardation 1 (Fmr1) 
gene on the X chromosome which encodes the FMR 
protein. This genetic alteration results in the absence 
of the FMR protein, which controls synaptic plasticity 
and maturation [28]. Fragile X syndrome shares 
some common symptoms as autism, including 
pragmatic deficits, language delays, reduced eye 
contact, difficulty with regulation of attention, self-
injury and aggression [29]. Fmrl knockout mice are 
the predominantly used animal model for Fragile X 
syndrome. These mice also display several autistic-
like features, including hyperactivity in the open 
field, perseveration and repetitive behaviors such 
as hand flapping and high level of self-grooming, 
and reduced affiliative behaviors toward a female 
[30]. Restivo, et al. found that Fmrl knockout mice 
showed impaired habituation, which was observed 
in autism [31,32], and rearing in enriched cages could 
restore the habituation to objects in this mice model 
[33]. In this study enriched cages failed to reverse the 
hyperactivity in the open field [33], while another study 
found that hyperactivity of this model was eliminated 
when animals were raised in social enriched 
environment [23]. Early social enrichment also rescued 
the reduced investigative / affiliative behaviors in 
male Fmrl knockout mice [23]. Postmortem studies 
discovered an reduction in the dendritic branching 
in the hippocampus of autistic children [34]. Fmrl 
knockout mice also showed a decrease of basal 
dendrite branching and this alternation was reversed 
by rearing in enriched cages [33].

2.1.2 Rett syndrome models
Rett syndrome is an X-linked progressive disorder 
that affects in girls during early childhood. It is usually 
caused by mutations in MeCP2, a gene coding for 
methyl-CpG binding protein that regulates RNA 
splicing and chromatin remodeling [35]. Children with 
Rett syndrome exhibit autistic features in the early 
period of the disease. The autistic features include 
“lack of following and expressionless face”, “lack of 
eye-to-eye contact”, “hypersensitivity to sound”, etc. 
[36]. MeCP2308/Y (generated by truncation at amino 
acid 308) and MeCP2Tg (overexpression of MeCP2) 
mice display increased anxiety-like behavior and 
stereotypies [37]. MECP-/y (MeCP2 null mutants) 
mice showed increased anxiety-like behavior in 
the open field and early environmental enrichment 
could rescue this behavior [38]. Enriched housing 
environment also rescued the increased anxiety-
like behavior in novelty suppressed feeding in the 
female heterozygous MeCP+/- mice [39]. BDNF is one 
of the transcriptional targets of MeCP2 and related 
with autism [40]. Serum BDNF levels were found to 
be significantly lower in females with typical autism, 
compared with controls [40]. In female MeCP+/- 
mice, the protein levels of BDNF in hippocampus 
were significantly lower than that of wildtype mice 
while environmental enrichment normalized the 
hippocampal BDNF protein levels [39]. Similarly, 
environmental enrichment could augment cortical 
BDNF levels, which was decreased in MECP-/y mice 
[38].

2.1.3 μ-opioid receptor gene knockout mice
Genetic variation in the μ-opioid receptor gene 
(Oprm1) is reported to associate with social 
behaviors. Children carrying the Oprm1 A118G 
polymorphism display improved parent-chi ld 
relations, and G allele carriers displayed significantly 
higher sensitivity to social rejection than A allele 
homozygotes [41].  μ-opioid receptor knockout 
mice display social deficits, including deficits in 
maternal separation induced ultrasonic vocalization 
and reduced maternal attachment in pups, and 
altered social reward in juvenile mice, and thus 
are proposed as a monogenic model of autism [41-

43]. Early social enrichment (double mothering) 
was reported to rescue the abnormal response to 
maternal separation in Oprm1 knockout pups, and 
restore the preference for a social stimulus versus 
an object as wildtype mice [44].

2.1.4 Potocki-Lupski syndrome model
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Potocki-Lupski syndrome is caused by a duplication 
of chromosome 17p11.2. Patients with this syndrome 
display abnormal behaviors such as anxiety, 
inattention, cognitive deficit and autistic symptom [45]. 
Mice models for Potocki-Lupski syndrome have been 
generated by chromosome engineering and these 
mice display all core autistic behaviors typically 
utilized to diagnose autism, including abnormal 
social interactions, impaired communication and the 
presence of restrictive or repetitive behavior, while 
rearing in enriched environment mitigated some 
of the abnormalities, resulted in less aggression 
and anxiety-like behavior [46]. Elevated serotonin 
was observed in about a third of patients with 
autism [47]. In this animal model, elevated serotonin 
was also observed, and enrichment was found to 
rescue the altered serotonin levels in the primary 
somatosensory cortex and decrease the levels of 
5-HIAA in the hippocampus [46].

2.2 Effect of environmental 
enrichment on inbred mouse models 
of autism
Some inbred mouse strains expressing phenotypes 
relevant to autism are also used as autism models. 
Several studies revealed that C58/J mice displayed 
increased activity and repetitive behaviors, as well 
as less social approach in the three-chamber test [48-

51]. Environmental enrichment (rearing in enriched 
cages) was reported to reduce repetitive behaviors 
and improve reversal learning in this strain [52, 53]. 

BTBR T+tf/J is another inbred strain that serve 
as model of autism, which display avoidance of a 
nose-to-nose contact with conspecifics, reduced 
ultrasonic vocalization in social situations and 
high levels of repetitive self-grooming [54]. Social 
enrichment (peer-rearing with B6 mice) was reported 
to rescue sociability deficits, but not high level of 
repetitive self- grooming [55], while rearing in enriched 
cages could reduce the time spent in repetitive 
grooming [56].

2.3 Effect of environmental 
enrichment on chemical induced 
autism models
Prenatal exposure to VPA is commonly used 
to generate autism model in rodents. VPA is a 
frequently used antiepileptic drug. However, more 
and more evidence indicated a linkage between 
prenatal VPA exposure and an increase risk of 

autism [57]. To mimic human intra uterine exposure, 
animals were usually exposed during organogenesis, 
commonly between day 9 to 13 [9]. Offsprings are 
reported to display autistic behaviors, including 
hyperactivity, repetitive and stereotypic behaviors, 
increased anxiety and decreased social behaviors 

[58]. In Wistar rats that were prenatally exposed to 
VPA, environmental enrichment (rearing in enriched 
cages) was reported to result in lower locomotor 
activity, less repetitive/stereotypic-like behavior, 
decreased anxiety-like behavior, increased number 
of social exploration and total social behaviors [59]. 
In ICR mice subjected to prenatal VPA exposure, 
environmental enrichment improved anxiety-like 
behavior, social deficits and cognitive impairment [60]. 
Prenatal VPA exposure also resulted in decreased 
dendritic spine density in the hippocampal CA1 
region and this change could also be reversed by 
enriched housing [60].

3 CLINICAL APPLICATION OF 
ENVIRONMENTAL ENRICHMENT 
IN AUTISM
Although environmental enrichment was used to 
model behavioral intervention in rodent models of 
autism, it is quite different from the early behavioral 
interventions that are used in autistic children. In 
clinical, environmental enrichment is rather a form of 
Sensory Enrichment Therapy [61]. Abnormal sensory-
based behaviors are commonly observed in autism, 
displaying hyper or hypo-sensitivities in processing 
of auditory, visual or tactile sensory [62]. Thus it was 
suggested that this therapy might help to decrease 
abnormal sensory responses and ultimately result 
in reduction of other symptoms of autism [61]. Two 
randomized clinical trials were carried out by Woo, et 
al. to examine the effect of environmental enrichment 
in autistic children [63, 64]. Compared with usual care, 
environmental enrichment resulted in significant 
decrease in autism symptoms, improved cognitive 
skills and receptive language skills, but did not affect 
expressing language skills. However, given the small 
sample sizes and short study durations, these results 
were considered to be of low strength of evidence 
for the effect of environmental enrichment in autism 
[65]. Thus further long-term follow-up and studies with 
larger sample sizes are still warranted.

4 CONCLUSION
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In sum, although the effect of environmental 
enrichment on autism remains uncertain in clinical, 
it has been demonstrated to exert beneficial effects 
in several animal models of autism, resulting in less 
anxiety-like behavior, decreasing repetitive behavior 
and the reversing the deficits in social and cognitive 
behaviors. Environmental enrichment therefore 
provides an effective model for investigating the 

neurobiological changes after non-pharmacological 
intervention in autism therapy.
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