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Reading the Perspective paper by Boyle, Li, and Pritchard entitled “An 
expanding view of complex traits: from polygenic to omnigenic” [1], I 
was torn initially between feelings of doubt and accord. Under a very 
provocative title, the authors present an excellent integrational analysis 
of current knowledge, and summarize in clear words what many 
scholars in the field would ultimately concur with. Putting multifactorial 
traits and disorders into the framework of an “omnigenic” model seems 
like an overinterpretation of the evidence at first, but is subsequently 
qualified by the authors by giving their definition of omnigenicity on 
page 1182 as “...essentially any gene with regulatory variants in at 
least one tissue that contributes to disease pathogenesis is likely to 
have nontrivial effects on risk for that disease.”

In the first part of their analyses, the authors make the point that, 
when defining trait-/disease-associated alleles based on linkage 
disequilibrium (LD) around findings from single variant genome-wide 
association studies (GWAS), most of the genome is associated with 
the trait/disease. GWAS of height is used as an example, and similar 
results have been published for schizophrenia previously [2]. While this 
rather broad distribution of association may suggest an absence of 
specificity, the authors – like many others cited in their paper – confirm 
that signal is enriched near genes expressed in disease- / trait-related 
cell types. However, in two out of three diseases (schizophrenia, 
rheumatoid arthritis, Crohn disease) used as example, the contribution 
of risk from active chromatin-related signals comes from broadly 
expressed genes at least to a similar extent to that from genes uniquely 
expressed in relevant cell types. I concur with the authors, where they 
hypothesize that this may be due to small world network structure of 
signal transduction. Indeed, it has become clear that many proteins are 
utilized in multiple signalling pathways, where specificity for a certain 
pathway is achieved through spatial localization / restriction rather than 
uniqueness of the protein. To my opinion, this principle can provide a 
good explanation for the broad distribution of findings.

Another point raised by the authors is the apparent difference 
between genes involved in disease through common and rare variants: 
taking schizophrenia as an example, they indicate that studies of 
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different types of rare variants, i.e. rare and de novo 
exonic variants [3, 4] as well as rare copy-number 
variants (CNVs) [5] show consistent enrichment of 
readily interpretable (synaptic) gene categories, 
whereas findings from GWAS do not [6]. A bit of cation 
may be necessary at this point, as the papers cited 
for the rare variant studies represent the first larger-
scale exome sequencing studies, and the CNV study 
cited is a large-scale reanalysis of (partly) previously 
published data, which might explain the consistency 
of the findings. New data in preparation right now 
should be awaited to prove or disprove this point. 

Whether or not based on rare variants, the 
perspective given by Boyle and colleagues on 
the existence of (a l imited number of) “core 
genes” involved in a disease / trait and (multiple) 
more peripheral genes influencing its etiology 
and severity through more diffuse mechanisms 
nicely complements insights from phenotypic and 
genetic studies in different psychiatric disorders. 
For example, working in the field of ADHD, a few 
recent developments have been important to my 
understanding of disease etiology: firstly, the fact 

that – consistent with the phenotypic continuity of 
ADHD-traits in the general population and clinically 
diagnosed ADHD – there is also near perfect overlap 
between the common genetic factors contributing 
to ADHD and ADHD-traits (rg = 0.94; [7]); secondly, 
the existence of genes associated with susceptibility 
to several disorders in GWAS [8-10] and rare variant 
studies [11] in combination with the existence of a 
heritable “Psychiatry (P)-factor”, which explains 
variance across externalizing, internalizing, and 
autistic population traits [12] ; thirdly, the increasing 
knowledge on the phenotypic and genetic overlap of 
ADHD with non-brain-centered disorders and traits 
[7, 13, 14]. Together, those data provide a picture of a 
multi-layered genetic contribution to ADHD (but also 
more generally to a psychiatric disorder), with core 
genes tightly linked to a (few) disorder(s), a second 
layer of more general “P-factor” genes, and a third 
layer of highly general “fitness” genes (e.g. those 
involved in inflammation or oxidative stress) (Fig. 1). 
The second and third layer may represent Boyle’s 
“peripheral genes”. The borders between the three 
layers are probably gradual.

Fig. 1 Model of the hierarchy of genetic contributors to psychiatric disorders, inspired by recent findings 
in phenotypic and genetic studies of psychiatric disorders/traits and the omnigenic model presented by 
Boyle and colleagues. 

In summary, the perspective paper by Boyle 
and coworkers provides a useful point of departure 
for studies into the genetic architecture underlying 
human complex diseases and traits. To me, the 

term “polygenic” seems to provide sufficient room 
to describe the model put forward by the authors, 
avoiding the chance of misinterpretation of the term 
“omnigenic”.
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