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ABSTRACT 

Schizophrenia (SZ) is a severe psychotic disorder that is highly heritable 
and common in the general population. The genetic heterogeneity of SZ is 
substantial, with contributions from common, rare, and de novo variants, 
in addition to environmental factors. Large genome-wide association 
studies have detected many variants that are associated with SZ, yet the 
pathways by which these variants influence risk remain largely unknown. 
SZ is also clinically heterogeneous, with patients exhibiting a broad range of 
deficits and symptom severity that vary over the course of illness and 
treatment, which has complicated efforts to identify risk variants. However, 
the underlying brain dysfunction forms a more stable trait marker that 
quantitative neurocognitive and neurophysiological endophenotypes may be 
able to objectively measure. These endophenotypes are less likely to be 
heterogeneous than the disorder and provide a neurobiological context to 
detect risk variants and underlying pathways among genes associated with 
SZ diagnosis. Furthermore, many endophenotypes are translational into 
animal model systems, allowing for direct evaluation of the neural circuit 
dysfunctions and neurobiological substrates. We review a selection of the 
most promising SZ endophenotypes, including prepulse inhibition, mismatch 
negativity, oculomotor antisaccade, letter-number sequencing, and 
continuous performance tests. We also highlight recent findings from large 
consortia that suggest the potential role of genes, particularly in the neuregulin 
and glutamate pathways, in several of these endophenotypes. Although 
endophenotypes require additional time and effort to assess, the insight into 
the underlying neurobiology that they provide may ultimately reveal the 
underlying genetic architecture for SZ and suggest novel treatment targets. 
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SCHIZOPHRENIA: A GENETICALLY AND PHENOTYPICALLY 
COMPLEX DISORDER 

Clinical Course and Presentation 

Schizophrenia (SZ) is a severe and persistent psychotic disorder with a 
population prevalence of nearly 1% [1]. The profound clinical 
heterogeneity of SZ is reflected in its broad range of deficits and 
symptom severity. The positive symptoms associated with SZ include 
hallucinations, delusions, disorganized speech, and disorganized 
behavior, whereas the negative symptoms include diminished facial and 
emotional expression, poverty of speech, lack of motivation, an inability 
to experience pleasure, and social withdrawal. To receive a diagnosis of 
SZ, two or more of these symptoms must be consistently present for at 
least 1 month and must be severe enough to cause social and/or 
occupational dysfunction and neglect of hygiene. Due to the extreme 
heterogeneity in individual symptom profiles, Eugen Bleuler aptly 
described SZ as the “Group of Schizophrenias” in 1911, only 3 years after 
he first coined the term “schizophrenia” [2].  

The onset of SZ most commonly occurs in late adolescence or early 
adulthood [3] and is generally chronic and unremitting, often requiring 
multiple hospitalizations over the course of a lifetime [4]. Although about 
25% of patients with SZ will experience a full recovery with medication 
[5], most patients require long-term care and never return to their 
previous level of functioning. Given the severity of symptoms, about 40% 
of SZ patients attempt suicide and 5% succeed [6].  

The treatment of SZ is complex. Antipsychotic medications, which 
target the positive symptoms, are expensive, are only partially effective, 
and have troublesome side effects that, when paired with the lack of 
insight that is characteristic of SZ, often result in non-compliance [7,8]. In 
fact, the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) 
study, which investigated the effectiveness of five commonly used 
antipsychotics in a sample of 1460 patients with SZ, found that about 50% 
of patients discontinue their medications by 6 months and that 74% of 
patients discontinue their medications by 18 months [9]. Thus, it is 
imperative that we increase our understanding of the underlying 
etiology of SZ to facilitate the development of novel pharmacological 
agents that can target specific symptoms in this heterogeneous disorder. 

The Genetics of Schizophrenia 

Twin and multiplex family studies dating back to the 1940s have 
produced a range of heritability estimates for SZ. These family-based 
estimates of what one might describe as broad-sense heritability take 
into account the role of rare variants and were summarized in a widely 
quoted 2003 meta-analysis of SZ as a heritability estimate of 81% [10,11]. 
In contrast, single-nucleotide polymorphism (SNP)–estimated heritability 
is calculated by way of population-based genome-wide association 
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studies (GWAS) of common, additive genetic variation, and such studies, 
which do not take rare variants into account, have suggested that SZ 
heritability may be closer to 60–70% [10,12,13]. Note that when 
discussing the heritability of specific SZ endophenotypes later in this 
review, we are generally using broad-sense heritability.  

Although sporadic, non-familial cases of SZ are often observed, family 
history remains the strongest and best replicated risk factor for 
developing SZ [14]. Compared with the ~1% prevalence in the general 
population, relatives of an individual with SZ have a significantly 
increased risk of developing the disorder—that is, the closer the 
relationship between a relative and an individual with SZ, the more 
genes that are shared and the higher the risk, which ranges from 2 to 4% 
for the second-degree relatives of individuals with SZ to 10 to 15% for the 
first-degree relatives of individuals with SZ [10]. Still, the concordance 
rate for monozygotic (MZ) twins, who share their entire genome, is only 
45%. These studies support a strong role of genetics in SZ susceptibility 
but also suggest that environmental and other risk factors are involved.  

Identifying the genetic variants captured by these heritability 
estimates has been challenging. Early efforts to map the genes 
contributing to SZ risk through family-based linkage and association 
studies implicated many chromosomal regions and suggested plausible 
candidate genes [15–19]. However, there have been difficulties in 
narrowing the source of the signal within linkage regions and in 
identifying functional variants within the implicated genes, and these 
difficulties have been compounded by inconsistent replication of 
findings from different samples. These issues are largely due to the fact 
that SZ is a complex disorder that results from the interaction of many 
genetic and non-genetic factors [1,20]. As such, there is no clear one-to-
one relationship between genotype and phenotype. This is evident, for 
example, in family studies, wherein unaffected relatives often share risk 
variants with their affected family members. This reduced penetrance 
also affects case-control studies, as some portion of clinically unaffected 
individuals are likely carriers of SZ risk genes without expressing the 
phenotype. Heterogeneity also complicates gene identification, as 
different genes (i.e., genetic heterogeneity) or different variants of the 
same gene (i.e., allelic heterogeneity) may contribute to disease risk. 
Finally, sporadic, or non-familial, cases of SZ likely have different 
underlying genetic architecture than familial cases, yet both sporadic 
and familial SZ cases are combined in case-control studies of SZ. Such 
factors cause a significant reduction in the power of genetic studies, 
which has, in part, been addressed through more recent technological 
advances and the use of increasingly larger samples. 
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THE MODERN ERA OF GENOMICS IN SCHIZOPHRENIA 

Genome-Wide Association Studies (GWAS) 

The field of psychiatric genetics shifted to GWAS in 2007 with the 
introduction of microarray-based genotyping and the culmination of 
efforts to map the structure of the human genome. Such studies rely on 
allele frequency differences for SNPs in large samples of unrelated SZ 
cases and controls to implicate genomic regions containing risk genes. 
Although early SZ GWAS suffered from relatively small samples, 
combining results across studies has begun to produce replicable 
findings. For example, in a GWAS of 479 SZ cases and 2937 controls, 
followed by replication testing of 12 suggestive loci in 16,726 subjects, 
O’Donovan and colleagues identified ZNF804A as a possible susceptibility 
gene for SZ [21]. An initial GWAS of 2681 cases and 2653 controls from 
the Molecular Genetics of Schizophrenia (MGS) sample by Shi and 
colleagues found no loci reaching genome-wide significance, yet the 
meta-analysis of 8008 cases and 19,077 controls identified 7 SZ-associated 
SNPs on chromosome 6p22.1, which represents the extended major 
histocompatibility complex (MHC) region [22]. Likewise, an initial GWAS 
by Stefansson and colleagues in 2663 cases and 13,498 controls produced 
no significant findings, yet follow-up genotyping and meta-analysis 
implicated the MHC and variants in the neurogranin (NRGN) and 
transcription factor 4 (TCF4) genes [23]. Another study by the 
International Schizophrenia Consortium confirmed the association to the 
MHC region and demonstrated that common genetic variants in 
aggregate may account for >30% of the risk for SZ [24].  

More recently, the formation of the Psychiatric Genomics Consortium 
(PGC) as the largest consortium in the history of psychiatry has enabled 
mega-analyses of SZ. In a landmark publication of ~37,000 cases and 
~113,000 controls, the PGC identified 108 distinct regions that met 
genome-wide significance, 83 of which had not been previously reported 
[25]. These findings included many genes that are biologically plausible 
candidates, such as DRD2; several genes related to glutamate signaling; 
and the MHC region, yet the associated variants collectively only account 
for 3.4% of the risk for SZ. A considerable proportion of the observed 
heritability is thus not detectable in these very large studies of unrelated 
SZ cases and controls [26,27]. 

Next-Generation Sequencing (NGS) Studies 

Another strategy in the genetic investigation of SZ has been the 
application of next-generation sequencing (NGS) methods that were 
pioneered in cancer research. Contrary to the GWAS focus on common 
variants, these methods seek to identify copy number variants (CNVs) 
and single-nucleotide variants (SNVs) that occur in less than 0.1% of the 
general population but that have elevated frequencies and functional 
roles in SZ. CNVs associated with SZ are generally large, recurrent 
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deletions or deletions encompassing regions that are highly damaging 
and that consequently have large effects on risk, with odds ratios ranging 
from 2 to 60. Studies have collectively identified SZ-associated recurrent 
CNVs in several chromosomal regions (e.g., 1q21.1, 3q29, 7q11.2, 15q13.3, 
16p11.2, and 22q11), all of which are also associated with autism and 
intellectual disability, suggesting a shared genetic architecture between 
these disorders [28–32]. These CNVs tend to involve neurodevelopmental 
pathways, and genes in the neuregulin and glutamate pathways are 
disproportionately disrupted in SZ [29,32,33]. Although a recent study by 
the PGC, which represents the largest genome-wide analysis of CNVs for 
any psychiatric disorder, confirmed the presence of SZ-associated CNVs 
in these regions, the identified loci were present in only 1.4% of the 
21,094 SZ cases and account for only ~0.85% of the heritability of SZ [33].  

Whole-exome sequencing (WES) studies attempt to identify SNVs in 
the coding sequence of genes that may contribute to risk for SZ by 
examining frequency differences between cases and controls through 
mutational burden analyses. The extremely high rate of background 
mutation complicates such studies, which to date have been 
underpowered and have generally failed to provide insight into the 
mechanism of illness. For example, in a WES study of 166 cases and 307 
controls with follow-up genotyping of novel, potentially damaging 
variants in an independent sample of 2617 cases and 1800 controls, no 
variant reached study-wide significance [34]. Another WES of 2536 cases 
and 2543 controls with a focus on gene-based tests of disruptive variants 
similarly failed to find significance, although this study importantly 
confirmed a polygenic contribution of very rare (<1/10,000), damaging 
mutations to SZ risk [35]. Likewise, exome-sequencing studies in subsets 
of SZ subjects have been somewhat informative. For example, in an 
exome-sequencing study that investigated subjects with sporadic SZ, 
Gulsuner and colleagues found that de novo loss-of-function mutations 
occur more frequently in cases with sporadic SZ than in controls [36]; 
more recently, the findings in this study were supported by Yang and 
colleagues [37].  

Gene-Expression Studies 

The human genome is made up of DNA that is organized into 20,000 to 
25,000 genes. Nearly every human cell contains the same genes, but 
different cells and tissue have different patterns of gene expression. 
These differences in gene expression may contribute to diseases like SZ. 

Before each gene is expressed, the DNA must first be copied, or 
transcribed, into messenger RNA (mRNA). These transcriptions, which 
are collectively referred to as a transcriptome, control the function of 
cells. Several groups have explored the use of peripheral blood gene-
expression signatures [38] and used transcriptomes to investigate the 
biological consequences of SZ-associated genes; these studies have 
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suggested a potential role for ARC, NMDA receptors, synapse and 
immunity dysfunction, and CNS development in SZ [39].  

Epigenetic Studies 

Epigenetic “marks” in DNA change how genes are expressed in the 
process of DNA transcription to RNA and subsequent translation to 
protein. Environmental factors such as smoking, maternal starvation, 
and in utero viral infection can interact with genes via processes such as 
methylation and histone modification to change gene expression in the 
developing brain. These functional changes can be stable and have long-
lasting chromatin modifications that regulate both local and genome-
wide gene activity.  

DNA methylation is a normal biochemical process whereby atoms are 
added to DNA as part of gene expression, but environmental factors can 
lead to the formation of differentially methylated genetic regions. Some 
studies have demonstrated an enrichment of such changes in SZ-related gene 
networks [40]. For example, one study showed that SZ-associated 
methylation differences were observed at 923 cytosine-phosphate-guanine 
(CpG) islands and that some of the replicated differentially methylated 
positions overlapped with top-ranked SZ regions from GWAS [41].  

Nucleosomal histone modifications contribute to genome organization 
and function, with various histone methylation and acetylation marks 
(including H3-trimethyl-lysine 4 [H3K4me3] and H3-acetyl-lysine-27 
[H3K27ac]) serving as key regulators for active gene promoters and 
enhancers [42]. Studies of histone modification are ongoing in SZ [43], 
and publicly accessible resources are available, including results from the 
dorsolateral prefrontal cortex and anterior cingulate cortex of SZ brains and 
UCSC browser visualizations for cell-specific maps (see 
http://www.psychencode.org/ or https://www.synapse.org/#!Synapse:syn4566010). 
Given the relative ease that histone posttranslational modifications can 
be observed in nearly all somatic tissues, this type of epigenetic 
information could serve as a useful marker if an association is found 
between histone modifications and SZ.  

Summary  

Although SZ is highly heritable, identifying risk genes has proven 
difficult due to the complex nature of the disorder. Large-scale GWAS 
employing a case-control design have detected many common variants 
associated with SZ diagnosis. However, genome-wide significant variants 
account for only a small portion of the overall risk, the effect size of each 
individual allele is very small, and the pathways by which these variants 
impact risk remain largely unknown. Studies of rare variation have shed 
light on possible underlying pathways, yet CNVs and SNVs account for 
only a small percentage of SZ cases. Likewise, although emerging 
technologies in gene-expression and epigenetic studies may ultimately be 
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fruitful, the challenge of translating genetic findings to precision 
medicine in SZ still persists.  

THE VALUE OF DEEP PHENOTYPING IN SCHIZOPHRENIA RESEARCH 

A key limitation faced by researchers in SZ is that the heterogeneous 
clinical phenotype complicates the diagnosis, therefore diluting the 
genetic signal. To address this issue, Gottesman and Shields introduced 
the concept of “endophenotypes” in SZ [44], and the application of 
endophenotypes to the study of SZ has become known as “deep 
phenotyping.” These state-independent traits are associated with illness, 
are observed in unaffected family members at a higher rate than in the 
general population, and co-segregate with illness in families [44]. To be 
useful in genetic studies, an endophenotype must also be significantly 
heritable, reliably measured, and stable over time [45,46]. Given that 
endophenotypes fall within the genotype-to-phenotype pathway of the 
disease process, they form a critical link between genetic risk variants 
and the more direct lower-level biological processes that contribute to 
observable symptoms [47,48]. In other polygenic, complex conditions, 
like hypercholesterolemia, endophenotypes (i.e., cholesterol) have been 
particularly useful in helping to characterize the underlying biological 
dysfunction and to develop targetable treatments [49]. 

Endophenotypes are quantitative in nature and reflect a continuous 
distribution of trait values in the general population, consistent with 
polygenic theories of SZ [50–52]. Under this scenario, as detailed in 
Figure 1, individuals carrying non-penetrant risk variants do not 
diminish a linkage signal, as with an analysis of diagnosis. Indeed, SZ 
patients, unaffected relatives, and controls provide a range of scores and 
are thus informative regarding the underlying liability. Therefore, by 
using endophenotypes to measure the underlying liability to SZ as a 
quantitative trait, we gain significant power and increased resolution 
compared to analyses of diagnosis, which use a somewhat subjective 
threshold to dichotomize a continuous trait [53,54]. For a disorder like SZ, 
which has a prevalence of ~1% and heritability of 60–80%, the analysis of 
a quantitative endophenotype is expected to be approximately 100-fold 
more efficient than the analysis of the categorical diagnosis, which 
translates to a 10-fold increase in power [53]. The analysis of an 
endophenotype thus requires a substantially smaller sample size to achieve 
comparable power to an analysis of SZ diagnosis. By enriching for 
individuals with higher liability to SZ, who presumably carry more risk 
alleles, family-based designs provide a further increase in power [55]. 
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Figure 1. The liability threshold model. Endophenotypes capture the full spectrum of information in 
liability distribution, whereas diagnosis dichotomizes the distribution into “affected” and “unaffected” 
according to a threshold defined by subjective symptom profiles. 

NEUROPHYSIOLOGICAL AND NEUROCOGNITIVE ENDOPHENOTYPES 
IN SCHIZOPHRENIA 

Neurocognitive dysfunction is a hallmark of SZ, leading to impaired 
quality of life and poor functional outcome [56–58]. As such, 
neurocognitive deficits are endorsed by the Measurement and Treatment 
Research to Improve Cognition in Schizophrenia (MATRICS) and the Food 
and Drug Administration (FDA) as targets for the development of new 
treatments for SZ [59,60]. Data from the North American Prodrome 
Longitudinal Study (NAPLS) has further demonstrated that measures of 
neurocognitive functioning in SZ may have predictive utility in identifying 
clinically high-risk subjects who will convert to psychosis [61,62]. Some 
researchers have suggested that the neurocognitive deficits in attention, 
learning, and memory that characterize SZ may arise from a primary 
impairment in the filtering or “gating” of sensory information [63]. 
According to this hypothesis, an inability to filter out irrelevant external 
stimuli leads to the psychotic symptoms (e.g., hallucinations, delusions) 
and cognitive disorganization observed in SZ. Therefore, studying an 
array of endophenotypes that range from largely automatic (i.e., 
preattentive) neurophysiological measures to highly volitional (i.e., 
attentive) neurocognitive measures may provide a window into the 
biological processes underlying SZ. Examples of several promising 
endophenotype paradigms are discussed below and shown in Figure 2.  

Many neurophysiological and neurocognitive endophenotype 
measures exhibit medium-to-large deficits in SZ, exhibit moderate-to-
substantial stability, and are independent of clinical state [64–67]. Here, 
we focus on three widely used neurophysiological, inhibitory 
endophenotypes that have been shown to rank highly across such 
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parameters: prepulse inhibition, mismatch negativity, and oculomotor 
antisaccade [64]. Given the large body of literature describing 
neurocognitive measures and SZ, we describe a few representative tests 
with a focus on working memory and attention. Reviews of additional 
endophenotype paradigms that have been used in genomic and clinical-
outcome studies of SZ [64–67], including neuroimaging studies [68,69], 
can be found elsewhere. Figure 3 demonstrates the large effect sizes of 
some potentially promising endophenotypes, which are described below. 

 

Figure 2. The range of SZ-related endophenotypes from automatic to volitional. PPI and MMN are 
neurophysiological endophenotypes representing automatic, or preattentive, processes that can be elicited 
with no active participation from the test subject. PPI is measured as the percent inhibition (i.e., gating) of 
the startle reflex in response to a weak prestimulus. MMN is measured as the difference between the 
waveforms for a standard stimulus ERP and a deviant stimulus ERP. Neurocognitive endophenotypes like 
CPT and LNS are volitional, or attentive, and require active participation from the subject. CPT measures 
sustained attention as the signal/noise discrimination ratio (d’) of blurred target stimuli (in the DS-CPT) or 
pairs of identically presented stimuli (in the CPT-IP). LNS measures working memory as the correct 
reordering of a verbally presented list of intermixed numbers and letters. AS is measured as the ratio of 
correct antisaccades (i.e., looking in the opposite direction of the presented stimulus) to total interpretable 
saccades (i.e., eye movements in any direction). Although AS is a neurophysiological measure, subjects are 
required to actively participate and control their response. AS: antisaccade; CPT: continuous performance 
test; DS: degraded stimulus; ERP: event-related potential; IP: identical pairs; LNS: letter-number 
sequencing; MMN: mismatch negativity; PPI: prepulse inhibition; SZ: schizophrenia. 
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Figure 3. Effect sizes (Cohen’s d) of potential SZ endophenotypes as analyzed by Light and colleagues [64]. 
AS: antisaccade; LNS: letter-number sequencing; MMN: mismatch negativity; PPI: prepulse inhibition. 

Prepulse Inhibition (PPI) 

PPI of the acoustic startle reflex is a measure of sensorimotor gating 
that may reflect the biological processes underlying gating impairments 
in SZ. Compared to healthy controls, patients with SZ fail to inhibit their 
startle response (i.e., eye blinking) when they hear a startle-eliciting 
stimulus (i.e., a pulse) after hearing a weaker or softer stimulus that 
precedes the pulse by 30-to-120 ms (i.e., the prepulse). There is a 
consistent body of literature demonstrating robust PPI deficits in SZ that 
are relatively stable across time [64,66,70,71], despite the emergence and 
nearly ubiquitous use of atypical antipsychotics, which enhance PPI and 
make deficits more difficult to detect and quantify [72,73]. PPI deficits are 
also observed in unaffected relatives of SZ patients and are significantly 
heritable in SZ families (45–50%), suggesting that PPI may be a marker of 
risk for SZ rather than a consequence of illness [66,74–76]. Furthermore, 
while all SZ patients demonstrate comparable deficits in PPI regardless of 
family history of illness, the broad-sense heritability of PPI deficits is 
substantially increased in families with a higher genetic vulnerability to 
SZ (47%) compared to that observed when family history for illness is not 
considered (29%) [77]. 

Mismatch Negativity (MMN)  

MMN is a component of the event-related potential (ERP) that is 
elicited when an infrequently presented “deviant” stimulus occurs in a 
sequence of repetitive “standard” auditory stimuli [78]. The deviant 
sound can differ in one or more perceptual features, such as duration, 
frequency, or intensity. MMN refers to the difference between the 
waveforms for the standard stimulus ERP and the deviant stimulus ERP 
and usually peaks between 150 and 250 ms after the presentation of the 
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deviant stimulus [79]. Like PPI, MMN can be elicited regardless of 
whether a subject is paying attention to the sequence, and it is thus 
considered an index of preattentive sensory processing. Reduced MMN 
amplitude is one of the most robust findings in SZ [80], with a large effect 
size of about 1.0 that is relatively unaffected by medication and remains 
stable across time and fluctuations in clinical symptoms [64,81–84]. MMN 
is also 68% heritable and is present in individuals at genetic risk for 
developing SZ [85–90]. MMN is also associated with psychosocial 
functioning and has shown promise for predicting the onset of psychosis 
in high-risk populations [91–95]. Finally, we note that the P3a, another 
measure of early auditory information processing, is a promising 
endophenotype that is often measured in tandem with MMN [64,84,96].  

Oculomotor Antisaccade (AS) 

The AS task is a widely used electrophysiological measure of 
inhibitory failure, which is an important cause of the cognitive and 
clinical abnormalities found in SZ [97]. This task requires participants to 
fixate on a central target and respond to a peripheral cue by looking in 
the opposite direction at the same distance; it is measured as the ratio of 
correct to total interpretable saccades (0 to 1). Compared to healthy 
controls, SZ patients display significant deficits on an overlap version of 
the AS task, with a large effect size of about 1.0 [64,98,99]. Studies have 
also found that AS performance, latency, and gain are stable measures of 
pathophysiological disturbances in SZ [100,101]. In addition, large family 
and twin studies have shown that the AS task has a high heritability of 
42–57% [74,102] with documented deficits in first-degree relatives of SZ 
patients [103,104]. These data suggest that AS performance represents a 
useful endophenotype for SZ. 

Letter-Number Sequencing (LNS) 

Working memory is the ability to maintain and manipulate the 
internal representation of a stimulus in transient memory [105]. Deficits 
in working memory have been extensively documented and are 
profoundly affected and persistent in SZ [106] and in relatives of patients 
with SZ [107]. These deficits are thought to reflect the fundamental 
cognitive disturbances that are associated with SZ [108]. A subtest of the 
well-standardized and normed Wechsler Memory Scale III [109], the LNS 
is a prototypical measurement of verbal working memory information 
storage with manipulation. Administration of this task involves the 
verbal presentation of a series of intermixed letters and numbers, 
increasing in difficulty from 2 stimuli to 8 stimuli as subjects advance in 
the task. In the reorder condition of the LNS, subjects repeat the numbers 
in ascending order followed by the letters in alphabetical order, which 
provides an assessment of executive functioning and working memory. 
The LNS can also be administered in the forward condition, wherein 
subjects simply repeat the numbers and letters in the order presented, 
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which provides an assessment of transient online storage and retrieval. 
SZ patients typically perform worse (i.e., obtain lower scores) than 
controls for both conditions, but larger differences are usually observed 
for the reorder condition. The LNS ranks highly among neurocognitive 
endophenotypes, as it demonstrates large SZ-related deficits and 
longitudinal stability [64]. The LNS is also highly heritable, both 
individually (39%) and as part of a composite measure of working 
memory (27%) [74,110].  

Continuous Performance Test (CPT) 

Deficits in attention were included in Bleuler’s first descriptions of SZ, 
and such deficits remain a key nosological feature of the disorder, as well 
as a primary area of emphasis in SZ research [2,65]. More recent studies 
of endophenotypes in SZ have narrowed in on deficits in sustained 
focused attention, which are most commonly measured using CPTs. 
These tests typically take 15 min to administer and require subjects to 
monitor a series of target stimuli (e.g., letters, digits, shapes) for 30–100 
ms between periods of vigilance during which no stimuli are presented. 
Several different versions of the CPT are available to assess various 
aspects of sustained focused attention and vigilance. For example, the 
Degraded Stimulus CPT (DS-CPT) is associated with a high perceptual load 
and involves the identification and response to highly blurred, black and 
white target stimuli [111,112], whereas the Identical Pairs version of the 
CPT (CPT-IP) is associated with a working memory load and requires the 
subject to respond each time a string of 3 or 4 digits is presented twice in 
a row [113,114]. SZ patients consistently show large performance deficits 
on CPTs, with meta-analyses reporting a mean effect size of 1.18 [115]. 
These deficits are typically not affected by psychotropics [116,117] and 
are relatively persistent across time and clinical status [113,118]. Deficits 
in CPTs are also reliably detected in the unaffected relatives of SZ 
patients, with moderate heritability in healthy families (39–49%) [113] 
and higher heritability observed in SZ families (38–79%) [74,119,120].  

GENETIC STUDIES OF ENDOPHENOTYPE DEFICITS IN 
SCHIZOPHRENIA 

Despite the increasing use of endophenotypes in the study of SZ, few 
large-scale genetic studies of endophenotype deficits in SZ have been 
published. In the largest genome-wide study of PPI to date, investigators 
from the Learning on Genetics of SZ Spectrum (LOGOS) identified and 
replicated common variants in the NGF and CALN1 genes that reached 
genome-wide significance [121]. Although this study only included 
healthy males, polygenic risk scores calculated based on the PGC SZ 
cohort showed that an increased risk for SZ was associated with PPI 
deficits. Subsequent meta-analyses have offered additional evidence to 
support an abnormal neurotrophin profile in SZ, with the observance of 
decreased peripheral blood NGF levels in SZ patients [122], and have 
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highlighted the polygenicity of PPI, suggesting the relevance of specific 
variants in COMT, GRIK3, PRODH, and TCF4 [123]. A recent GWAS of 
pursuit initiation and AS error rate conducted by the Bipolar-
Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium 
implicated genes involved in nuclear trafficking and gene silencing (IPO8), 
axonal guidance and synaptic specificity (PCDH12), transduction of nerve 
signals (NRSN1), retinal degeneration (LMO7), and synaptic glutamate 
release (SH3GL2) in the regulation of oculomotor inhibition [124].  

Other studies have examined the relationship between neurocognitive 
functioning and polygenic risk for SZ in large, community-based samples. 
For example, one study found that higher risk for SZ was associated with 
lower neurocognitive functioning in a very large sample of community-
dwelling adults from the UK Biobank (N = 112,151) [125]. These findings 
are consistent with those of the Avon Longitudinal Study of Parents and 
Children (ALSPAC), who found that higher risk for SZ was associated with 
lower IQ [126]. Similarly, the Cognitive Genomics Consortium (COGENT) 
reported a genetic correlation of −0.17 between general cognitive 
function and SZ in their population-based sample of >35,000 individuals 
[127]. Although these studies suggest that a portion of the genetic risk for 
SZ may be mediated through genetic effects on neurocognitive 
functioning, the reliance on assessments of IQ and global cognitive 
summaries in population-representative samples provides little insight 
into the neurobiological mechanisms that may mediate the genetic 
overlap between cognitive functioning and SZ. Large genetic studies of 
neurocognitive deficits in the context of SZ are thus needed to identify 
the genes contributing to this shared genetic architecture. 

The Consortium on the Genetics of Schizophrenia (COGS) has 
conducted candidate gene and linkage analyses of many SZ-related 
endophenotypes, including those reviewed here. The COGS results 
suggest that the genes contributing to the specific endophenotypes 
reviewed here converge on a functional gene network, which is 
summarized in Figure 4. In association studies that genotyped 130 
families using a custom genotyping array that evaluated 94 candidate 
genes for SZ, the COGS identified 71 SNP-endophenotype associations that 
involved 28 genes and 1 or more of the endophenotypes discussed in this 
review and that were strong enough to satisfy an experiment-wide 
significance level of 0.05, after accounting for linkage disequilibrium, 
endophenotype correlations, family structure, gene size, and multiple 
testing. Furthermore, each of the associated genes shown in Figure 4 
contained at least one SNP with an a posteriori chance of ≥84% of being a 
true finding of association, indicating that the observed associations most 
likely represent true positive results. Additionally, these studies 
identified 8 genes (CTNNA2, ERBB4, GRID2, GRIK3, GRIK4, NOS1AP, NRG1, 
and RELN) with pleiotropic associations across multiple endophenotypes 
in the COGS sample, as well as in an independent case-control study 
[128–130]. These 8 genes are also associated with at least two of the 
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endophenotypes that are the focus of this review and span 
neurophysiological and neurocognitive domains. Linkage analyses of a 
larger sample of 296 COGS families using a genome-wide SNP array 
identified many regions of at least suggestive evidence for linkage, with 
several candidate and other genes of interest located beneath the linkage 
peaks, including ADORA2A, ATXN7, CSMD1, GRIK2, GRIN2B, GRIN3A, 
HTR2A, and SLC6A3 [131].  

 

Figure 4. Ingenuity Pathway Analysis of the genes identified through association and linkage analyses of 
the endophenotypes discussed in this review. Genes are represented as nodes with solid lines representing 
direct protein-protein interactions and dashed arrows representing more indirect effects on expression, 
activation, or inhibition. Genes and interactions in black show association (blue box) or linkage (red box) 
with the endophenotypes listed in this review in the COGS study, whereas those in gray represent other 
interacting genes. Genes in a bold font are associated with at least two endophenotypes from this review 
and span neurophysiological and neurocognitive domains. Genes identified as associated with SZ 
diagnosis by GWAS of common variants are indicated with a “C,” whereas those identified by studies of 
rare and de novo variation are indicated with an “R.”  *GRIN1 showed evidence of both association and 
linkage with other neurocognitive endophenotypes in the COGS study, and both DISC1 and GRID2 showed 
evidence of linkage with neurophysiological endophenotypes in the COGS study. Note that CSMD1 and 
CTNNA2 were prominent genes in these analyses, with external support from studies of SZ diagnosis, but 
do not directly connect into the defined network. COGS: Consortium on the Genetics of Schizophrenia; 
GWAS: genome-wide association study; SZ: schizophrenia.  

Studies of common, rare, and de novo variation in SZ offer 
independent support for many of the genes implicated through linkage 
or association studies of SZ-related endophenotypes. For example, a 
recent large GWAS of SZ diagnosis conducted by the PGC and a GWAS of 
neurocognitive endophenotypes for SZ identified associations with 
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ATXN7, CSMD1, DRD2, GRIN2A, GRIN3A, and GRM3 [132,133]. Other 
studies have shown a significant burden of rare variants in GRIN1, 
GRIN3A, and SLC1A2 in SZ patients [35,134], as well as a disproportionate 
disruption of genes in the neuregulin and glutamate pathways [29]. 
Studies of de novo variation have implicated CSMD1, CTNNA2, DBH, 
DISC1, GRID2, GRIN2B, HTR2A, RELN, and SLC6A3 in SZ and related 
disorders [135–143].  

As Figure 4 demonstrates, genetic analyses of both SZ-related 
endophenotypes in family-based samples and large SZ case-control 
studies implicate glutamatergic neurotransmission and synaptic 
plasticity pathways in mediating SZ susceptibility, which is consistent 
with the glutamate hypothesis and an abundance of evidence implicating 
NRG1-ErbB4 signaling in SZ [144–146]. For a comprehensive list of genes 
that have been associated with SZ, see the summary of genetic findings 
compiled by Ren and colleagues [147]. 

TRANSLATIONAL STUDIES OF SCHIZOPHRENIA-ASSOCIATED 
DEFICITS 

Cross-species investigations are important for the development of novel 
therapeutic interventions in SZ. For this reason, the endophenotype strategy 
has been advocated by the National Institute of Mental Health as part of the 
Research Domain Criteria (RDoC) framework [148]. Several 
endophenotypes are amenable to translational studies, which use 
intrinsic or induced deficits in animal models to mimic those observed in 
humans and thereby provide important insight into the neurobiological 
processes underlying SZ.  

PPI is one example of a SZ-related endophenotype that can be reliably 
measured across species to understand the biology of brain-based 
inhibitory mechanisms [149]. PPI deficits in rats can be induced through 
the administration of dopamine (DA) agonists like apomorphine (APO). In 
one study of two rat strains displaying varying sensitivity to APO, 104 
genes were found to significantly differ in their expression of the nucleus 
accumbens, which represents a control center for PPI. Many of these 
genes correlated with PPI deficits and were clustered within the DA 
receptor-signaling, synaptic long-term potentiation (involving glutamate 
transmission), and inositol phosphate metabolism pathways, suggesting 
that these pathways may substantially influence PPI and may therefore 
represent therapeutic targets [150]. By examining these findings in the 
context of human genetic studies, we can begin to piece together how 
various pathways may be involved in each specific endophenotype. For 
example, of the 12 human genes associated with PPI-related deficits in SZ 
patients and their families, 8 show significant differences in gene 
expression related to PPI in rats [128–130,150,151].  

Some neurocognitive endophenotypes have also been investigated in 
animal models. Given the hypothesis that neurocognitive dysfunction in 
SZ results from impaired stimulus filtering and that this attentional 
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impairment may relate to reduced expression of muscarinic 
acetylcholine receptors in SZ, some investigators have suggested that 
mice treated with scopolamine, a muscarinic receptor antagonist, may 
provide a model of attentional dysfunction in SZ. Using a five-choice 
version of the CPT (5C-CPT) developed specifically for rodents, the 
investigators found that mice treated with scopolamine exhibited 
significantly impaired attention that was characterized by reduced target 
detection and increased impulsive responding [152]. These findings are 
comparable to those observed in humans with SZ using a reverse-translated 
version of the 5C-CPT, which was designed to minimize demands on 
perceptual, visual learning, processing speed, or working memory functions 
and which has been validated against the CPT-IP [152]. Given that the FDA 
has endorsed neurocognitive deficits as a key treatment target, these and 
other related findings hold promise to facilitate the development of pro-
cognitive therapeutics that may improve functioning in SZ patients.  

In the future, investigations of the transcriptome, DNA methylation, 
and histone modification may also have translatable potential. These 
kinds of studies represent a promising area for SZ research, but such 
methods have not yet been entirely incorporated into SZ endophenotype 
studies. It is likely that the integration of these gene expression and 
epigenetic resources with endophenotype-related animal models may be 
informative in future studies. 

CONCLUSIONS AND FUTURE DIRECTIONS 

SZ is a clinically heterogeneous disorder in which patients exhibit a 
broad range of neurobiological deficits and symptom severity, and this 
profound heterogeneity has complicated efforts to identify genetic risk 
variants. The use of SZ-related endophenotypes, rather than diagnosis, in 
genetic studies offers several advantages that may help address these 
complications and facilitate the identification of genetic risk variants and 
aberrant molecular pathways [153–155]. Traditional case-control studies 
collapse the substantial phenotypic variation in SZ into a single, 
categorical diagnosis. However, recent studies have shown that 
phenotypic specificity is actually more important than a large sample 
size for detecting true genetic associations in genetic studies of complex 
diseases, including SZ [156,157]. Although the use of large samples 
remains important in SZ research, endophenotypes can provide the 
needed phenotypic specificity, as well as increased biological relevance. 
For a complex disorder like SZ, the genetic signal from studies that use 
endophenotypes rather than diagnosis should thus be stronger, more 
direct, and associated with fewer variants, each of larger individual 
effect. As each endophenotype reflects a discrete neurobiological 
function or pathway, they also may be useful in parsing the complex 
etiology of SZ and reducing the associated heterogeneity. Finally, by 
capitalizing on the inherent power advantages of a quantitative trait, the 
analysis of an endophenotype requires a substantially smaller sample 
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size, nearly 10-fold, to achieve comparable power to an analysis of SZ 
diagnosis. Although assessing endophenotypes may incur an additional 
burden with regard to recruitment and testing, the potential payoff 
suggests that a deep phenotyping strategy is well worth the effort. 

Genetic analyses of endophenotypes can also supplement traditional 
analyses of SZ diagnosis, providing additional biological insight into 
these results. One simple way to utilize endophenotypes is to inform 
existing large-scale GWAS of SZ diagnosis [132]. Using enrichment and 
polygenic scoring methods, we can assess how much of the common genetic 
risk is shared between SZ and a particular endophenotype [24,158]. In 
addition to estimating the overall genetic correlation between a given 
endophenotype and SZ, we can also investigate whether SNPs that increase 
the risk for SZ overlap more than we would expect by chance with SNPs that 
result in deficits in, for example, PPI or neurocognition. 

Endophenotypes are also ideally suited to multivariate phenotype 
methods, which can be used to construct individual phenotypic profiles 
and to identify subgroups of similar SZ patients [159]. Methods that can 
simultaneously incorporate both phenotype and genomic information 
may prove particularly useful in this regard [160]. The identified 
subgroups can then be correlated with clinical factors, such as illness 
severity, clinical course, level of functioning, and medication response, to 
establish individualized treatment protocols. By investigating the 
relationship of clinical, genetic, and environmental factors to subgroups 
defined by endophenotypes, which reflect the underlying 
neurobiological dysfunctions, we may gain a better understanding of 
Bleuler’s “Group of Schizophrenias.”  

The endophenotype strategy thus complements large-scale case-
control efforts, providing the necessary biological insight to facilitate 
precision medicine in SZ. Ultimately, we may be able to distill the 
number of endophenotypes to a smaller robust subset that accounts for a 
majority of the variance between cases and controls [161]. Using 
endophenotypes to dig deeper, going beyond the broad clinical diagnostic 
category of SZ, will facilitate the identification of pathways leading from 
genetic variation to brain dysfunction. A better understanding of the 
genetic substrates underlying deficits in key domains defined by SZ-
related endophenotypes will provide a molecular roadmap to guide the 
development of novel pharmacological interventions aimed at improving 
real-world functioning, as well as information to guide precision-based 
treatment decisions.   
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