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ABSTRACT

This study seeks to advance the theory of dynamic asset pricing by
introducing asset valuation, adjusted by environmental, social and
governance (ESG) ratings, within a unified Bachelier–Black–Scholes–Merton
market model, and developing option valuation in both continuous-time
and discrete-time (binomial pricing tree) frameworks. An empirical study
based on call option prices for assets selected from the Nasdaq-100 develops
implied values for the main ESG parameter in the pricing model. For these
stocks, option traders have in-the-money ESG valuations that are lower
than the spot price. Within the discrete-time framework, we demonstrate
how an informed trader can adopt a futures trading strategy to optimize an
effective dividend stream.

KEYWORDS: ESG finance; Bachelier’s model; Black–Scholes–Merton model;
option prices; binomial pricing trees

INTRODUCTION

Despite initial rejection of the Bachelier model [1], its arithmetic
Brownian motion dynamics have found acceptance in certain areas. To
combine the strengths of both arithmetic and geometric Brownian motion
models, the classical Black–Scholes–Merton (BSM) model [2,3] has been
merged with a modernized Bachelier (MB) model [4], producing a unified
Bachelier–Black–Scholes–Merton (BBSM) model [5]. Both the unified model
and its MB limit allow for price trajectories taking values in R, while,
under the BSM limit, price processes take values in R+. Exploiting the
more extensive price range of the MB model, [4] developed a dynamic
ESG-adjusted valuation (“ESG-adjusted pricing”) for assets, which allows
for stocks with low ESG ratings to be given a negative ESG-adjusted value.
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A critical parameter of the adjusted valuation is the so-called ESG affinity,
quantifying the market view of the “size” of the contribution of ESG ratings
to asset values.

Consideration of ESG factors in financial modeling marks a paradigm
shift in how asset values are assessed. As theworld evolves toward a greener
future, industry leaders must champion sustainability. (However, see [6]
for a study of how sustainability efforts have varied by market). Providing
a solid quantitative use for ESG ratings is an important step in the effort to
champion sustainability in the financial world.

The use of ESG-adjusted prices alters the investment approach
required for long-term investing, enabling ESG-conscious investors to more
effectively measure, and (potentially) profit from, ESG strategies. Analyses
based on such pricing must be woven into the investment processes of any
discerning investor, as well as integrated into the corporate strategy of any
company that is truly committed to increasing shareholder value [7].

This paper builds upon the following foundational papers. The work
of [8] extended the BSM model to address option pricing in markets with
informed traders, incorporating information about stock price direction and
expected returns (As ESG-valued assets can take both positive and negative
values, their BSM-based model for informed traders cannot be applied to
ESG-valued markets). Using ESG-adjusted asset valuation as a motivation
and example of the possibility of negative asset values, [4] developed the
MB model, which corrects the defaults of previously published Bachelier
models. Specifically theMBmodel defines a riskless asset that is theoretically
consistent with the arithmetic Brownian motion dynamics of the risky asset
and has a risk-free rate whose value can change between positive and
negative over time. Additionally the risky asset price will not diverge to
infinity if only a positive risk-free rate occurs. Asare Nyarko [9] explored
fair valuation of ESG valued options under the MBmodel. The development
of the unified BBSM model [5] thus presents the opportunity to extend
ESG-valued markets with informed traders to a broader model which
includes MB as one limiting case.

The first goal of this paper is to embed ESG asset valuation within the
continuous-time BBSM model (Section 2: EMBEDDING ESG PRICING IN THE
BBSM MODEL), placing ESG finance within the broader framework of a
unified Bachelier and Black–Scholes–Merton theory. In Section 3 (BINOMIAL
OPTION PRICING UNDER THE BBSM MODEL), we embed the ESG-adjusted
asset valuation into the BBSM binomial option pricing model of [5].

The second goal is to provide an empirical study of discrete option pricing
under the ESG-BBSM binomial model (Section 4: EMPIRICAL EXAMPLES:
ESG-ADJUSTED PRICES AND PARAMETER FITTING). Our data set for 16
stocks selected from the Nasdaq-100 is described in Section 4.1 (The Data).
Empirical examples of ESG-adjusted prices are presented in Section 4.2
(ESG-Adjusted Prices). In Section 4.3 (Parameter Fits) we describe how to
fit the required parameters of the binomial model to empirical data. In
Section 5 (THE IMPLIED ESG AFFINITY), using published call option prices
for 01/02/2024, we compute implied values of the ESG affinity parameter as
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functions of strike price and time to maturity. These can then be expressed
in terms of an implied ESG valuation (as a function of strike price and time
to maturity). Comparing the implied ESG valuation to financial spot prices
provides insight into the views of option traders on the impact of ESG ratings
on the underlying asset value.

The third goal of this study (Section 6: TRADING FORWARD CONTRACTS
UTILIZING INFORMATION ON ASSET PRICE DIRECTION) focuses on a
discrete-time, futures trading strategy that can be adopted by an option
hedger (the trader taking a short position on an option) who may posses
information regarding the future direction ofmovement of the ESG-adjusted
valuation of the underlying stock. While the efficient market hypothesis
argues that the direction of the asset price movement is unpredictable
[10–18], numerous studies challenge this view and indicate that price
direction may, indeed, be predictable [19–33]. As a result, [34–36] and many
others have worked on understanding informed trading markets and the
strategies employed. We demonstrate that the trader can optimize this
trading strategy to produce an effective dividend stream.

Section 7 (CONCLUSION) concludes the paper with a discussion of future
directions.

EMBEDDING ESG PRICING IN THE BBSMMODEL

Consider the market (A,B, C) consisting of a risky asset A, a riskless asset
B, and a European contingency claim (option) C. Under BBSM, A has the
price dynamics of a continuous-time diffusion process determined by the
stochastic differential equation

dAt = φ(At, t)dt + ψ(At, t)dBt , t ≥ 0 , A0 > 0,

φ(At, t) = at + µtAt, ψ(At, t) = vt + σtAt
(1)

where Bt ∈ [0,∞) is a standard Brownian motion on a stochastic basis

(Ω,F ,F =
{
Ft = σ(Bu,u ≤ t) ⊆ F , t ≥ 0

}
,P) (2)

of a complete probability space (Ω,F ,P). We assume that (Ω,Ft,P) is a
complete probability space for all t ≥ 0 [37]. Note that P is a real-world
probability measure.

In (1), φ(At, t) is the price drift term and ψ(At, t) is the price diffusion
term. The coefficients satisfy at ∈ R, µt ∈ R, vt ≥ 0, σt ≥ 0, and are
F -adapted processes. The F -adapted processes φ(At, t) and ψ(At, t) are
assumed to satisfy the Lipschitz and growth conditions in x ∈ R for t ≥ 0
(see Section 5G and Appendix E of [38]). We also require

∫ t
0 |φ(x, s)|ds < ∞

and
∫ t
0 |ψ(x, s)2|ds < ∞, ∀t ≥ 0 and x ∈ R. To simplify the exposition, we

will assume that at, µt, vt, and σt have trajectories that are continuous and
uniformly bounded on t ∈ [0,∞) P-almost surely (P-a.s.).

Lindquist [5] define the appropriate price dynamics of the riskless asset
B (any other choice will result in a riskless asset whose dynamics are
inconsistent with that of the risky asset) in the BBSM market model as

dβt = χ(βt, t)dt, χ(βt, t) = ρt + rtβt, t ≥ 0, β0 > 0 (3)
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Again, ρt ∈ R and rt ∈ R are F -adapted processes. The F -adapted process
χ(βt, t) is also assumed to satisfy the Lipschitz and growth conditions in x,
as well as the condition of absolute integrability. To simplify the exposition,
we will assume that ρt and rt have trajectories that are continuous and
uniformly bounded on t ∈ [0,∞) P-a.s. The MB model is achieved as the
limiting case µt = σt = rt = 0, while the classical BSM model is the limiting
case at = vt = ρt = 0. For brevity, we adopt the notation φt = φ(At, t),
ψt = ψ(At, t) and χt = χ(βt, t). We require ψt > 0, P-a.s. A necessary condition
for no-arbitrage is the requirement that βt ≤ At, P-a.s.

Under the no-arbitrage assumption, the market price of risk is

Θt =
φt – χt
ψt

(4)

which is strictly positive P-a.s. for all t ≥ 0 providing φt > χt, P-a.s.
The option C has the price dynamics

Ct = f (At, t), t ∈ [0,T] (5)

where f (x, t), x ∈ R, t ∈ [0,T], has continuous partial derivatives ∂2f (x, t)/∂x2

and ∂f (x, t)/∂t on t ∈ [0,T), and T is the expiration (maturity) time of C.
The option’s maturity payoff is CT = g(AT) for some continuous function
g : R → R. The risk-neutral valuation of Ct is [5]

Ct = EQt

[
exp

(
–
∫ T

t

(
ru +

ρu
βu

)
du
)
g(AT )

]
, t ∈ [0,T] (6)

where Q ∼ P is the equivalent martingale measure and the asset price
dynamics under Q is

dAt =
(
rt +

ρt
βt

)
Atdt + ψtdBQt , t ≥ 0 (7)

In equation (6), BQt , t ∈ [0,∞), is a standard Brownian motion on the
stochastic basis (Ω,F ,F,Q).

Consider a published ESG rating (score) Z(X)t ∈ [0, 10] for a company X at
time t. Typically the scores Z(X)t are on a zero-to-ten or a zero-to-one-hundred
scale. Our data provider, Bloomberg Professional Services, uses the
zero-to-ten scale. Rachev [4] argue that bounded scales for an ESG score do
not differentiate adequately between the amount of effort that a company
must undergo to raise their score above a current value. The amount of effort
to raise an ESG score from 0 to 0.5 is trivial compared to the effort required
to raise a score from 9.5 to 10.0. They further argue that scores based upon
a convex, monotonically increasing function better represent such effort,
and that the choice of such a function should be based ultimately on an
axiomatic approach. In the absence of such an approach, they proposed the
relative ESG measure

Z(X;I)t =
Z(X)t – Z(I)t

Z(I)t
(8)
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where Z(X)t is the ESG rating (score) of company X and Z(I)t is the ESG score
of a relevant market index I. The value of Z(X;I)t is independent of the range
of the scale as long as the range is finite and the same range is used for both
Z(X)t and Z(I)t . They further define the ESG-adjusted stock price of company
X at time t ≥ 0 by

At = S(X)t (1 + γESGZ(X;I)t ) (9)

which incorporates ESG scores as part of an asset’s valuation. Here S(X)t >
0 represents the financial price of an asset, while At ∈ R represents an
ESG-adjusted valuation, which [4] refer to as the ESG-adjusted price. In
our view, this relative ESG score (which, like return and risk-measure, is
dimensionless) adds a third dimension to conventional risk - return analysis
of dynamic asset prices. In equation (9), γESG ∈ R is referred to as the ESG
affinity of the financial market. The ESG affinity is expected to change slowly
with time (see Endnote 1 of [4]). Here we assume it is constant over the
both the historical window of prices and the option price maturity times
considered.

The ESG-adjusted stock price (equation (9)) can be negative. This is not
surprising as the relative score Z(X;I)t is analogous to any financial ‘spread’.
Hence [4] argued that the MB model, rather than BSM, is better designed
to capture the trajectories of ESG-adjusted prices. We note the following
dependencies of At on γESG.

At = S(X)t + γESG
(
S(X)t Z(X;I)t

)
(10a)

At+1 – At = S(X)t+1 – S
(X)
t + γESG

(
S(X)t+1Z

(X;I)
t+1 – S(X)t Z(X;I)t

)
(10b)

E[At] = E
[
S(X)t

]
+ γESGE

[
S(X)t Z(X;I)t

]
(10c)

Var[At] = Var
[
S(X)t

]
+ 2γESGCov

[
S(X)t , S(X)t Z(X;I)t

]
+ (γESG)2Var

[
S(X)t Z(X;I)t

]
(10d)

From (10a) through (10d), we see that changing the value of γESG only affects
the (additional) fractional financial price term Z(X;I)t S(X)t , which satisfies
|Z(X;I)t S(X)t | ≤ S(X)t .

BINOMIAL OPTION PRICING UNDER THE BBSMMODEL

Lindquist ([5] , Section 7) developed a binomial option pricing model
under the BBSM model. We briefly summarize that model here. Consider a
BBSM market (A,B, C) consisting of the risky asset (stock) A, the B and call
option C. The stock price At evolves according to the binomial pricing tree

A(k+1)∆,n =
{

A(u)(k+1)∆,n = Ak∆,n + uk∆,n, if ζk+1,n = 1,
A(d)(k+1)∆,n = Ak∆,n + dk∆,n, if ζk+1,n = 0

(11)

In equation (11), Ak∆,n, k = 0, 1, . . . ,n, n ∈ N = {1, 2, . . .} , is the stock price
at time k∆, ∆ = ∆n = T/n where T is the fixed maturity time and A0 > 0.
For every n ∈ N, ζk,n, k = 1, 2, . . . ,n, are independent, identically distributed
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Bernoulli random variables with P(ζk,n = 1) = 1–P(ζk,n = 0) = pn determining
the filtration

F(n) =
{
F (n)
k = σ(ζj,n : j = 1, . . . ,k), F (n)

0 = {∅,Ω}, ζ0,n = 0
}

(12)

of the stochastic basis (Ω,F ,F(n),P) on the complete probability space
(Ω,F ,P).

The riskless asset B has the discrete price dynamics

β(k+1)∆,n = βk∆,n + χk∆,n∆, k = 0, 1, . . . ,n – 1, β0,n > 0 (13)

where χk∆,n is the instantaneous rate of equation (3) at times k∆.
Under BBSM, price changes, rather than returns, are of primary interest.

Let
c(k+1)∆,n = A(k+1)∆,n – Ak∆,n, k = 0, . . . ,n – 1, c0,n = 0 (14)

Then,

c(k+1)∆,n =
{

c(u)(k+1)∆,n = uk∆,n, with probability (w.p.) pn,
c(d)(k+1)∆,n = dk∆,n, w.p. 1 – pn

(15)

In order that the càdlàg process on the Skorokhod spaceD[0,T] generated
by the binomial tree (equation (11)) converge weakly to the continuous time
process (equation (1)), we require that the conditional mean and variance
satisfy

E[c(k+1)∆,n|F (n)
k ] = φk∆,n∆, Var[c(k+1)∆,n|F (n)

k ] = ψ2k∆,n∆ (16)

whereφk∆,n andψ2k∆,n are the instantaneousmean and variance of equation
(7) at time k∆. Then uk∆,n and dk∆,n are given by

uk∆,n = φk∆,n∆ +
√
1 – pn
pn

ψk∆,n
√
∆ , dk∆,n = φk∆,n∆ –

√
pn

1 – pn
ψk∆,n

√
∆ (17)

The option C has the discrete price dynamics Ck∆,n = C(Ak∆,n,k∆), k =
0, . . . ,n–1. Consider a self-financing strategy, Pk∆,n = ak∆,nAk∆,n+bk∆,nβk∆,n
replicating the option price process Ck∆,n. The standard no-arbitrage
arguments lead to the system

ak∆,nAk∆,n + bk∆,nβk∆,n = Ck∆,n (18a)

ak∆,nA
(u)
(k+1)∆,n + bk∆,nβ(k+1)∆,n = C

(u)
(k+1)∆,n (18b)

ak∆,nA
(d)
(k+1)∆,n + bk∆,nβ(k+1)∆,n = C

(d)
(k+1)∆,n (18c)

Solution of equations (18b) and (18c) yields

ak∆,n =
C(u)(k+1)∆,n – C

(d)
(k+1)∆,n

uk∆,n – dk∆,n
,

bk∆,n =
1

βk∆,n + χk∆,n∆

C(u)(k+1)∆,n –
C(u)(k+1)∆,n – C

(d)
(k+1)∆,n

uk∆,n – dk∆,n
A(u)(k+1)∆,n

 (19)
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Finally, solution of equation (18a) provides the risk-neutral valuation of the
option given by the recursion

Ck∆,n =
βk∆,n

βk∆,n + χk∆,n∆

(
qk∆,nC(u)(k+1)∆,n + (1 – qk∆,n)C(d)(k+1)∆,n

)
(20)

where the risk-neutral probability qk∆,n is

qk∆,n = pn –
φk∆,n –

χk∆,n
βk∆,n

Ak∆,n

ψk∆,n

√
pn(1 – pn)∆ (21)

The limit ak∆,n = vk∆,n = ρk∆,n = 0 of equation (20) and equation (21)
produces the option price recursion relation for the BSM model,

Ck∆,n =
1

1 + rk∆,n∆

(
qk∆,nC(u)(k+1)∆,n + (1 – qk∆,n)C(d)(k+1)∆,n

)
(22)

having risk-neutral probability

qk∆,n = pn – θk∆,n
√
pn(1 – pn)∆ (23)

where θk∆,n is the discrete form of themarket price of risk, θt = (µt–rt)/σt, t ≥
0, in the BSM model (in agreement with [8]). In this limit, the discrete price
of the riskless asset obeys, βk∆,n = β0

∏k–1
j=0 (1 + rj∆,n∆).

The limit µk∆,n = σk∆,n = rk∆,n = 0, produces the option price recursion
relation for the [4] Bachelier model,

Ck∆,n =
βk∆,n

ρk∆,n + βk∆,n

(
qk∆,nC(u)(k+1)∆,n + (1 – qk∆,n)C(d)(k+1)∆,n

)
(24)

The risk-neutral probability qk∆,n is (see also [8]),

qk∆,n = pn –
ak∆,n –

ρk∆,n
βk∆,n

Ak∆,n

vk∆,n

√
pn(1 – pn)∆ (25)

In this limit, the discrete price of the riskless asset obeys βk∆,n = β0 +∑k–1
j=0 ρj∆,n∆.

The Binomial Model is Not Recombining

A careful analysis shows that the risky-asset asset price process (equation
(11)) does not, in fact, form a recombining tree. For a fixed value of k,
k = 0, 1, ...,n, the superscripts (u) and (d) determine node “level” values at
time k + 1. For a recombining binomial tree, at time k, there are k + 1 level
numbers. Thus each node on the tree is indexed by a k, j pair, k = 0, ...,n,
j = 1, ...,k + 1. With the inclusion of level numbers, equation (11) is written
as

Aj+1(k+1)∆,n = A
j
k∆,n + u

j
k∆,n, w.p. p,

Aj(k+1)∆,n = A
j
k∆,n + d

j
k∆,n, w.p. 1 – p

(26)
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where, from equation (17),

ujk∆,n = φ
j
k∆,n∆ + p(u)ψjk∆,n

√
∆, djk∆,n = φ

j
k∆,n∆ – p(d)ψjk∆,n

√
∆,

φ
j
k∆,n = a + µA

j
k∆,n, ψk∆,n = v + σA

j
k∆,n,

p(u) =
√
1 – pn
pn

, p(d) =
√

pn
1 – pn

(27)

Figure 1 illustrates a price configuration on four nodes of the tree, with
time and level values indicated. Substituting equation (27) into equation
(26) gives

Aj+1(k+1)∆,n = α
+Ajk∆,n + η

+, w.p. p,

Aj(k+1)∆,n = α
–Ajk∆,n + η

–, w.p. 1 – p
(28)

where
α+ = 1 + µ∆ + p(u)σ

√
∆, η+ = a∆ + p(u)v

√
∆,

α– = 1 + µ∆ – p(d)σ
√
∆, η– = a∆ – p(d)v

√
∆

(29)

Note that α+, α–, η+, and η– are constants.

Figure 1. Time and level notation for the price evolution of the risky asset on the BBSM binomial tree.
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For the tree to be recombining, in Figure 1 we must have

Aj+1(k+2)∆,n = α
+Aj(k+1)∆,n + η

+ = α–Aj+1(k+1)∆,n + η
– (30)

With some algebra, the difference

ϵ =
(
α+Aj(k+1)∆,n + η

+
)
–
(
α–Aj+1(k+1)∆,n + η

–
)

(31)

can be shown to be
ϵ = aσ – vµ√

pn(1 – pn)
∆3/2 (32)

independent of time or level number. None-the-less, these constant errors
propagate multiplicatively along the tree. To ensure that the tree is
numerically recombining in our empirical work in Section 4, we define

Aj+1(k+2)∆,n = 0.5
(
α+Aj(k+1)∆,n + η

+ + α–Aj+1(k+1)∆,n + η
–
)

(33)

We note that ϵ vanishes more rapidly than
√
∆ and ∆ terms as ∆ ↓ 0.

However, theoretical work remains to be done to ascertain whether the
càdlàg process on the Skorokhod space D[0,T] generated by either equation
(11) or equation (33) does indeed converge weakly to the continuous time
process (equation (1)). We leave this question open for further investigation.
We do note that the BSM and MB limits of the price process (equation (11))
are indeed recombining (binomial) trees whose generated càdlàg processes
do converge weakly to the appropriate BSM andMB limits of the continuous
time process (equation (1)).

EMPIRICAL EXAMPLES: ESG-ADJUSTED PRICES AND PARAMETER
FITTING

The Data

Table 1 provides brief summaries of the 16 companies in the Nasdaq-100
index (^NDX) as of 01/02/2024 that we considered for our empirical study.
The stocks were chosen to represent the full range of ESG scores. Adjusted
closing prices for the period 01/04/2016 through 01/02/2024 were obtained
for these stocks [39] (accessed 01/02/2024). ESG scores for all 101 asset
class shares in ^NDX were obtained from Bloomberg Professional Services
(accessed 01/02/2024). Bloomberg provides “fiscal year (FY)” ESG scores. On
01/02/2024, yearly ESG scores were available for FY 2015 through FY 2022;
scores for FY 2023 had not yet been released. Therefore the ESG scores for
FY 2023 were set equal to those for FY 2022. Individual stock weights for
the exchange traded fund (ETF) Invesco QQQ Trust (QQQ), were used as
proxies for actual ^NDX weights [40] (accessed 01/02/2024). In our view this
is a preferable choice for the weights as the ETF is a tradable instrument
that is designed to track the ^NDX.
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Table 1. Summaries of the 16 stocks used in the empirical study.

Ticker Company Name GICS Sector Headquarters

AAPL Apple Inc. I.T. Cupertino, CA
AMAT Applied Materials, Inc. I.T. Santa Clara, CA
AMD Advanced Micro Devices, Inc. I.T. Santa Clara, CA
AMZN Amazon.com, Inc. C.D. Bellevue, WA
ASML ASML Holding NV I.T. Veldhoven, NL
CSX CSX Corp. I Jacksonville, FL
DLTR Dollar Tree, Inc. C.D. Chesapeake, VA
EA Electronic Arts, Inc. C.S. Redwood City, CA
GOOGL Alphabet, Inc. C.S. Mountain View, CA
INTC Intel Corp. I.T. Santa Clara, CA
NVDA Nvidia Corp. I.T. Santa Clara, CA
PANW Palo Alto Networks, Inc. I.T. Santa Clara, CA
ROST Ross Stores, Inc. C.D. Dublin, CA
TEAM Atlassian Corp. I.T. Sydney, AU
WDAY Workday, Inc. I.T. Pleasanton, CA
WBD Warner Bros Discovery, Inc. C.S. New York, NY

Note: GICS sector abbreviations: I.T. = Information Technology, C.D. = Consumer Discretionary, I = Industrials, C.S. = Communication
Services.

Using the QQQweights, a weighted ESG score for ^NDXwas computed for
each fiscal year. Figure 2 shows the resultant fiscal year, relative ESG scores
Z(X;^NDX)t of the 16 chosen companies. Seven of the stocks have positive
relative ESG scores over the entire 8 years of data; eight have negative
relative ESG scores; and only one, PANW, has an ESG score that increases
from below the index value to above. We note that, with the exception of
PANW, the change in the ESG score of most companies relative to the index
weighted average has remained approximately constant, or decreased, since
2019.

The ESG data were smoothed to provide daily values. Specifically we
smoothed the values of Z(X;^NDX)t . The fiscal year values were assigned to the
last day (December 31) of the year (with the ESG score for 01/02/2024 being
set equal to the 12/31/2022 value). The daily smoothing, which consisted of
two steps: linear interpolation followed by a Gaussian-weighted, moving
average smoothing function, provided daily values between 12/31/2015
and 01/02/2024. The linear interpolation produced daily values between
successive year end values. The Gaussian-weighted, moving average
produced a smoother Z(X;^NDX)t curve having the property that it produces
no data “overshoot” or “undershoot”. Figure 3 shows an example of the
smoothing for Z(AAPL;^NDX)t .

J Sustain Res. 2025;7(2):e250022. https://doi.org/10.20900/jsr.20250022

https://doi.org/10.20900/jsr.20250022


Journal of sustainability 11 of 38

Figure 2. The relative ESG scores Z(X;^NDX)t of the 16 chosen companies.

Figure 3. Illustration of the two-step smoothing process for Z(AAPL;^NDX)t .

ESG-Adjusted Prices

In Section 5, implied values for γESG were estimated from call option
prices, reflecting the view of option traders. However, there is no estimate
for values of γESG based upon historical spot trading. In order to investigate
historical ESG-adjusted prices, we proceeded as follows. We assumed that
the financial price series S(X)t for each stock X over the historical time period
01/04/2016 though 01/02/2024 is a semi-martingale – most probably a Lévy
process. Using the historical price series, we computed the time series of
ESG-adjusted prices At(γESG) (equation (9)) over the range of parameter
values γESG ∈ [–5, 5]. This bounding range correlates strongly with our
requirement that the signal-to-noise ratio s:n(γESG) lie within 5% of the
value s:n(0); see Table A1.

For each value of γESG, we determined the signal:noise ratio, s:n(γESG),
of At(γESG) . Figure 4 shows plots of s:n(γESG) for four example stocks,
illustrating a range of behaviors.
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Defining γESGl and γESGu by

γESGl = max
{
γESG < 0 :

∣∣∣∣∣s:n(γESG)s:n(0) – 1
∣∣∣∣∣ = 0.05,

}
,

γESGu = min
{
γESG > 0 :

∣∣∣∣∣s:n(γESG)s:n(0) – 1
∣∣∣∣∣ = 0.05,

} (34)

determines a range γESG ∈ [γESGl , γESGu ] of values for which s:n(γESG) lies
within 5% of the value s:n(0). If the s:n ratio of the ESG-adjusted price
At(γESG) are larger than this range, there is the possibility that the time series
will no longer be a semimartingale. This does not imply an assumption that
At(γESG) is not a semimartingale if γESG falls outside of the range [γESGl , γESGu ].

Figure 4. Signal:noise ratio as a function of γESG.

The range [γESGl , γESGu ] found for each stock is given in Table A1 in
Appendix A . The ranges vary, sometimes significantly. For the four stocks
represented in Figure 4, Figure 5 plots the ESG-adjusted price series for
γESG ∈ {γESGl , 0, γESGh }. For PANW, the s:n ratio changes rapidly near γESG = 0,
and the range [γESGl , γESGu ] is very narrow. WBD and ASML illustrate that
the s:n ratio can remain within 5% of s:n(0) for extended ranges of either
γESG < 0 or γESG > 0. The results for AMD are representative of 13 of the 16
stocks for which [γESGl , γESGu ] ⊂ [–1, 1]. For AMD and ASML, Z(X)t > Z(^NDX)t
(Figure 2) over the historical time period; as a consequence the ESG-adjusted
price increases with γESG. For WBD, Z(WBD)

t < Z(^NDX)t and its ESG-adjusted
stock price decreases as γESG increases. PANW is the only stock of the 16
companies considered whose ESG score Z(PANW)

t increased from below to
above that of ^NDX. The γESGl = –0.09 and γESGu = 0.09 curves therefore cross
each other near the start of 2022 (difficult to visualize in the plot for PANW
in Figure 5).

Parameter fits

To compute option prices using the binomial BBSM model in Section
3, predictive empirical ESG-adjusted prices (equation(11)) were computed
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assuming constant parameter values. Lindquist [5] (Section 9) suggested
(but did not implement) procedures for fitting the parameters of a BBSM
model. With minor modification, we follow their suggested procedure for
estimating the risky-asset price parameters; we utilize a different procedure
for estimating the riskless asset price parameters. The parameter values
were estimated from the historical price data, as follows. Express the
historical data as the trading dates j = –M + 1, . . . , –1, 0 (M = 2013), where
j = –M + 1 corresponds to 01/04/2016 and j = 0 to 01/02/2024. The date
01/02/2024 (i.e., j = 0) corresponds to the date for which option price data
was collected and used in Section 5 to compute implied ESG affinity values.

Figure 5. ESG-adjusted prices of selected stocks as γESG varies over the set {γESGl , 0, γESGh }.

From equation (16) with constant coefficients, the conditional mean and
variance of the discrete change in stock price are

E
[
c(k+1)∆,n|F (n)

k

]
= (a + µAk∆,n)∆,

Var
[
c(k+1)∆,n|F (n)

k

]
= (v + σAk∆,n)2∆

(35)

The parameters a and µ were obtained using the regression

c(j+1)∆,n
∆

= a + µAj∆,n + ϵ(1)j∆,n, j = –M + 1, . . . , –1 (36)

Using the approximation (c(k+1)∆,n)2 ≈ Var
[
c(k+1)∆,n|F (n)

k

]
, the parameters

v and σ were estimated from the regression

|c(j+1)∆,n|√
∆

= v + σAj∆,n + ϵ(2)j∆,n, j = –M + 1, . . . , –1 (37)

With constant parameters, the price dynamics (equation(13)) of the
riskless asset has the discrete form

βk∆,n = β(k–1)∆,n + ρ∆ + r∆β(k–1)∆,n (38)

We note that the recursion relation (equation (38)) has the solution βk∆,n =
(1 + r∆)kβ0 + ρ∆

∑k–1
j=0 (1 + r∆)j. Under the limits k ↑ ∞, ∆ ↓ 0, such that

k∆ = τ , where τ is a constant time, the limit of this discrete solution is βτ =
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erτβ0 + ρ/r[erτ – 1], in agreement with the continuous solution to (equation
(3)) under constant coefficients.

The parameters ρ and r were estimated from the regression

β(j+1)∆,n – βj∆,n
∆

= ρ + rβj∆,n + δj∆,n, j = –M + 1, . . . , –1 (39)

The sequence of daily values βj∆,n required in equation (39) was generated
as follows

β(j+1)∆,n = (1 + r3,j∆)βj∆,n, j = –M + 1, . . . , –1, β(–M+1)∆,n = A(–M+1)∆,n (40)

where r3,j is the three-month U.S. Treasury bill rate, converted to a daily rate.
In effect, equation (39) models the evolution of the yield of the three-month
Treasury bill [41] (accessed 01/02/2024) using the discrete form ( equation
(38)) of the BBSM model riskless rate dynamics (equation (3)).

Finally, we estimated the probability pn for the upward movement of
the daily ESG-adjusted closing price by

pn =
1

M – 1

0∑
j=–M+2

Icj∆,n>0 (41)

where the indicator function Ix>0 satisfies Ix>0 = 1 if x > 0 and Ix>0 = 0
otherwise.

From equation (9), for each time t there exists a value γESG0,t = –1/Z(X;I)t ∈ R
such that At = S(X)t

(
1 + γESG0,t Z(X;I)t

)
= 0. Therefore if Z(X;I)t = Z(X;I), a time

independent constant over the historical period for which the regression
fits equations (36) and (37) are to be attempted, the linear regressions near
the value γESG0 = –1/Z(X;I) become ill-conditioned and unrealistic parameter
fits result. As we utilized an eight-year historical window over which Z(X;I)t
had behaviors similar to that illustrated in Figure 3, this was not an issue.

Figure 6 shows the dependence of the values of the fitted parameters
â, µ̂, v̂, σ̂, ρ̂, r̂, p̂n on γESG ∈

[
γESGl , γESGu

]
for ASML and ROST. These are

illustrative of the forms of dependence seen in the 16 stocks. In the plots
for p̂n, the black curve indicates the value of pn estimated using equation
(41). A change in the value of Icj∆,n>0 by its smallest increment (±1) as γESG

changes is visible as a corresponding jump in the value of p̂n. We used a
Gaussian-weighted, moving average smoother (with a window of 21 days)
to smooth the p̂n values (red curve).

In equation (40) the value of γESG only affects the value of A(–M+1)∆,n.
Consequently, in the fit equation (39) we see from Figure 6 that the
parameter ρ depends on γESG, while the parameter r is independent of
the value γESG. In fact the constant fitted value of r̂ is independent of
the stock considered, which makes sense as, except for an initial value
β(–M+1)∆,n = A(–M+1)∆,n, equations (40) and (39) depend only on the riskless
asset.
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Figure 6. Parameter dependence on γESG over their respective ranges
[
γESGl , γESGu

]
.

Figure 7. Range of fitted parameter values, by stock. The upper value of each range is black, the lower value
is red. Dotted horizontal lines denote the value 0 or 0.5 as appropriate.

Figure 6 shows that, with the exception of r̂, as γESG varies over the range[
γESGl , γESGu

]
, each fitted parameter varies over a range of values, with the

range varying by stock. For each fitted parameter, Figure 7 compares, by
stock, the range of values taken on by that parameter. Dotted horizontal
lines are used to guide the eye to separate positive from negative parameter
ranges, or, in the case of p̂n, to indicate stocks having pn > 0.5. We note
that the range

[
γESGl , γESGu

]
for each stock includes γESG = 0 (no ESG price

adjustment). Even so, theMB parameters â, v̂ and ρ̂ are consistently different
from 0 over the full

[
γESGl , γESGu

]
range (except for v̂ for WBD). Thus the

parameter fits, even for the financial stock price (γESG = 0), show an
admixture of MB and BSM behavior. The values of â and σ̂ are positive
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for all 16 stocks; for ρ̂ all values are negative. For µ̂, all are negative except
for two stocks, NVDA and PANW. Values of v̂ are equally divided between
positive and negative over the 16 stocks. Values of p̂n exceed 0.5 for all
stocks except WBD.

THE IMPLIED ESG AFFINITY

Let C(emp)(A0,Ti,Kj) denote published call option prices for an underlying
stock having maturity date Ti, i ∈ I, and strike price Kj, j ∈ J. Let
C(th)

(
A0,Ti,Kj;a,µ, v,σ, ρ, r,pn, γESG

)
denote the call option price computed

from Section 3 with constant parameters values. Let ξ̂ denote the historical
estimation of any parameter ξ. (Recall that, except for r̂, the parameters
have dependence on the value of γESG.) Then implied values for γESG are
computed via

γ(ESG,imp)(Ti,Kj)

= argmin
γESG

C(th)
(
A0,Ti,Kj; â, µ̂, v̂, σ̂, ρ̂, r̂, p̂n, γESG

)
– C(emp)(A0,Ti,Kj)

C(emp)(A0,Ti,Kj)

2 (42)

Based upon call option prices published on 01/02/2024 [39], we computed
theoretical call option prices for the same set of strike prices, Kj, j ∈ J,
and maturity times Ti, i ∈ I. In equation (42), the parameters â, µ̂, v̂, σ̂, ρ̂, p̂n
used in the theoretical option computation were fit from the historical data
for each value of γESG tested in the minimization procedure. As the value
of r̂ is independent of the value of γESG and of the stock, theoretically it
only needed to be calculated once. However, it is computed from the same
regression equation (39) that produces ρ̂, so it was recomputed for each
value of γESG tested. The value Z(X;^NDX)t used to compute prices on the
binomial tree was the smoothed value for 01/02/2024. The published call
option prices for AAPL on 01/02/2024 are presented in Figure 8. In all plots,
the maturity times T are presented in terms of trading days post 01/02/2024.

In contrast to some of the other stocks investigated, these option prices
forma fairly “regular” surface over the published range ofKj, j ∈ J(AAPL), and
maturity times Ti, i ∈ I(AAPL) values. The values γ(ESG,imp)(Ti,Kj) computed
from equation (42) are plotted as a surface in Figure 8. In preparing the
final surface shown, triangulation-based nearest neighbor interpolation
was used to fill inmissing (Ti,Kj) values in the γ(ESG,imp) surface. The surface
was then smoothed using a Gaussian weighted, moving average algorithm.
This smoothing produced relatively minor changes.

Analysis of the γ(ESG,imp) surface is enhanced by consideration of surface
contours as shown in the bottom left of the figure. The γ(ESG,imp)(T,K) = 0
contour lies between the contours –0.0833 and 0.229, indicating that option
traders have a positive view (relative to ^NDX) of the ESG rating of AAPL in
the upper left triangular region of out-of-the money (the adjusted closing
price for AAPL on 01/02/2024 was $185.64) strike prices and maturity dates
not exceeding 110 trading days. However, over the majority of (T,K) values,
the option traders have a negative view of the ESG rating of AAPL.
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Figure 8. For the stock AAPL: (top left) The empirical option prices published for AAPL on 01/02/2024. (top
right) The computed surface of γ(ESG,imp) values. (bottom left) Contours of the γ(ESG,imp) surface. (bottom
right) Box-whisker summary of the distribution of γ(ESG,imp) values.

A further view of the γ(ESG,imp) values is presented in Figure 8 as a
box-whisker summary of the distribution over the surface. Table A1 in
Appendix presents the numerical values of the minimum, maximum, P25,
P50, and P75 percentiles of the γ(ESG,imp) distribution for AAPL. This table
also presents the

[
γESGl , γESGu

]
for AAPL based upon examination of historical

adjusted ESG prices discussed in Section 4.3. The overwhelming majority of
γ(ESG,imp) values liewithin the

[
γESGl , γESGu

]
for AAPL, giving some confidence

that the implied ESG affinity values being computed are consistent with
semi-martingale behavior of the associated ESG-adjusted price.

To appreciate the implication of this, we define from equation (9) an
implied ESG-adjusted price

A(imp)
t = S(X)t

(
1 + γ(ESG,imp)Z(X;^NDX)t

)
(43)

where, for a given stock X, γ(ESG,imp) is a value from the implied ESG
affinity surface, and Z(X;^NDX)t was the relative ESG score and S(X)t the spot
price price used in computing the surface. Figure 9 presents the surface
of A(imp)

t values computed from the γ(ESG,imp) values of Figure 8. Also
shown are contour levels of the A(imp)

t corresponding to the analogous
contour levels of γ(ESG,imp) shown in Figure 8. Whether A(imp)

t is larger
or smaller than S(X)t depends on the sign of the product γ(ESG,imp)Z(X;^NDX)t .
If Z(X;^NDX)t is positive, then positive values of γ(ESG,imp) correspond to an
ESG valuation that exceeds S(X)t . However, if Z(X;^NDX)t is negative, then
negative values of γ(ESG,imp) correspond to an ESG valuation that exceeds
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S(X)t . Thus, consideration of the A(imp)
t surfaces rather than the γ(ESG,imp)

surfaces provides direct insight into the views of option traders on the
ESG-valuation of stocks.

Figure 9. For the stock AAPL: (left) The computed surface of A(imp)
t values. (right) Contours of the A(imp)

t
surface.

Since Z(AAPL,^NDX)t was positive on 01/02/2024, the surfaces of γ(ESG,imp)

and A(imp)
t are identical except for a rescaling of the z-axis. Similarly the

contour plots for γ(ESG,imp) and A(imp)
t are identical except for a rescaling of

the value on the contour levels. The negative view of the option traders over
most of the (T,K) range for AAPL, results in implied, ESG-adjusted prices
for 01/02/2024 that correspondingly fall below the financial price of AAPL
on 01/02/2024.

Figures B1 and B2 in Appendix B plot the published option prices on
01/02/2024 for all 16 stocks studied. The eight stocks for which Z(X;^NDX)t > 0
on t = 01/02/2024 are presented in Figure B1, while the eight stocks for which
Z(X;^NDX)t < 0 are presented in Figure B2. This separation reflects the fact
that when Z(X;^NDX)t > 0, the corresponding surfaces for γ(ESG,imp) and A(imp)

t
will look like identical (rescaled) versions of each other. However, when
Z(X;^NDX)t < 0, the surface A(imp)

t will look like an inverted, rescaled version
of the corresponding γ(ESG,imp) surface. Examination of published option
prices for PANW, TEAM, and WDAY show much greater irregularity over
the range of K and T values than that shown for AAPL. This results in some
corresponding surface irregularity (even after smoothing) in the γ(ESG,imp)

surface.
Plots of the γ(ESG,imp) surfaces for all 16 stocks are presented in Figures C1

and C2 in Section C. The stock organization into two separate figuresmirrors
that for Figures B1 and B2. Figures C3 and C4 provide the contour plots
of these surfaces. Box-whisker summaries of the distributions of γ(ESG,imp)

values are given in Figure C5. Plots of the A(imp)
t surfaces for all 16 stocks

are presented in Figures D1 and D2 in Section D. Figures D3 and D4 provide
the contour plots of these surfaces.

To summarize the information in Appendices C and D, Figure 10 presents
the box-whisker summaries of the distributions of A(imp)

t values for each of
the 16 stocks.

For ease of reference, the financial spot prices on 01/02/2024 are listed
in Table A2. From the contour plots in Figures D3 and D4, one can then
ascertain over what region of (T,K) values option traders view the ESG
valuation of the stock to be higher than its financial price. For EA, INTC,
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TEAM and WBD, spot traders have an implied ESG valuation that exceeds
the spot price over most of the (T,K) region. For eight of the stocks
(AAPL, AMAT, AMD, AMZN, ASML, CSX, NVDA, PANW), the implied ESG
valuation exceeds the spot price over a triangular, out-of-the-money, shorter
maturity time region as described above for AAPL. For the remaining four
stocks, the implied ESG valuation exceeds the spot price over most of the
out-of-the-money region. Thus, for 12 of the 16 stocks, option traders have
in-the-money ESG valuations that are lower than the spot price.

Figure 10. Box-whisker summaries of the distribution of A(imp)
t values for all 16 stocks studied. The

“right-arrow” to the left of each box-whisker plot for A(imp)
t corresponds to the stock spot price on 01/02/2024.

TRADING FORWARD CONTRACTS UTILIZING INFORMATION ON ASSET
PRICE DIRECTION

Hu [8] extended BSM-based binomial option pricing theory to complete
markets containing traders that have information on the stock price
direction. We further extend that theory using the BBSM-based binomial
option pricing in complete markets of Section 3. For simplicity, we assume
the parameters in the BBSM binomial model are constant: ak∆,n = a,
µk∆,n = µ, vk∆,n = v, σk∆,n = σ, ρk∆,n = ρ, and rk∆,n = r, Z(X,I)k∆,n = Z(X,I).
As earlier, we continue to assume γESG is constant.

Let ℵ denote the trader (hedger) holding the short position in the option
contract. Let pℵn ∈ (0, 1) denote the probability that information held by ℵ
at time k∆, k = 0, ...,n – 1, on the direction of stock price movement within
any interval [k∆, (k + 1)∆] is correct. If pℵn > 1/2, ℵ is an informed trader; if
pℵn < 1/2, ℵ is misinformed; and if pℵn = 1/2, we refer to ℵ as a noisy trader.
We assume ℵ’s informed trading actions do not influence market prices.

In [8], Shannon’s entropy (see e.g.,[42,43]) is used to quantify the amount
of information ℵ possesses. As with the price movement probability pn
of Section 3, pℵn is the probability governing a Bernoulli random variable
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ηk,n such that P(ηk,n = 1) = 1 – P(ηk,n = 0) = pℵn . Then Shannon’s entropy is
H(pℵn) = –pℵn lnpℵn – (1 – pℵn) ln(1 – pℵn), having maximum value H(1/2) = ln 2.
Hu [8] defined ℵ’s level of information as

τ (pℵn) = sign(pℵn – 1/2)
H(1/2) –H(pℵn)

H(pℵn)
(44)

where

sign(pℵn – 1/2) =


1, if 1/2 < pℵn ≤ 1,

0, if pℵn = 1/2,

–1, if 0 ≤ pℵn < 1/2

(45)

In [8], (44) is written in terms of the information distance

D(pℵn , 1/2) = H(1/2) –H(pℵn) = pℵn ln(2pℵn) + (1 – pℵn) ln(2(1 – pℵn)) (46)

We address the question of ℵ’s potential gain from trading with an
information level τ (pℵn) > 0. At any time k∆, k = 0, . . . ,n – 1, ℵ makes
independent bets, ηk+1,n, k = 0, . . . ,n – 1. Thus, the filtration equation (12)
needs to be augmented with the sequence of ℵ’s independent bets

F(n;ℵ) = {F (n,ℵ)
k = σ(ζj,n, ηj,n : j = 1, ...,k), F

(n,ℵ)
0 = {∅,Ω}} (47)

Specifically, relying on the information on stock-price direction, ℵ adopts a
trading strategy involving forward contracts. For convenience, we label the
two scenarios given by equation (11) for the price of A:

S(up)c : ζk+1,n = 1, resulting inA(k+1)∆,n = Ak,n + uk∆,nw.p.pn,

S(down)c : ζk+1,n = 0, resulting inA(k+1)∆,n = Ak,n + dk∆,nw.p.1 – pn
(48)

where uk∆,n and dk∆,n are given by equation (17) with constant coefficients.
If at k∆t, ℵ believes that S(up)c will happen, ℵ takes a long position in
∆(ℵ)
k∆-forward contracts, for some ∆(ℵ)

k∆ >∈ R+. The opposite party to this
transaction is a noisy trader. An optimal value for∆(ℵ)

k∆ is determined below.
The forward contracts mature at (k + 1)∆. If at k∆, ℵ believes that S(down)c
will happen, then ℵ takes a short position in ∆(ℵ)

k∆t-forward contracts having
maturity (k + 1)∆.

Lindquist [5] developed the price of a forward contract under the BBSM
model. Assuming there is no initial cost to enter into the forward contract
and constant coefficients, the T-forward price of A is

F(t,T) = At exp
{∫ T

t

(
r + ρ

βs

)
ds
}

(49)

where the constant coefficient solution to equation (3) is (see Equation (A3)
of [5])

βt =
{(

β0 + ρ/r
)
ert – ρ/r if r ̸= 0,

β0 + ρt if r = 0
(50)

Evaluating equation (49) using equation (50) gives

F(t,T) = At
βT
βt

(51)
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Discretizing (51) over the time interval k∆ → (k+1)∆ and assuming o(∆) = 0,
equation (51) becomes

F(k∆, (k + 1)∆) = Ak∆
β(k+1)∆
βk∆

= Ak∆

(
βk∆ + ρ/r

)
er∆ – ρ/r

βk∆

= Ak∆(1 + [r + ρ/βk∆]∆)

(52)

For notational brevity, define rk∆ = r + ρ/βk∆.
Using equation (11), conditionally on F (n,ℵ)

k , the payoff possibilities of ℵ’s
forward contract positions can be written as

P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)
k = ∆(ℵ)

k∆



A(u)(k+1)∆,n – Ak∆,n(1 + rk∆∆) w.p. pnp(ℵ)n ,

Ak∆,n(1 + rk∆∆) – A(d)(k+1)∆,n w.p. (1 – pn)p(ℵ)n ,

Ak∆,n(1 + rk∆∆) – A(u)(k+1)∆,n w.p. pn
(
1 – p(ℵ)n

)
,

A(d)(k+1)∆,n – Ak∆,n(1 + rk∆∆) w.p. (1 – pn)
(
1 – p(ℵ)n

)

= ∆(ℵ)
k∆



uk∆,n – Ak∆,nrk∆∆ w.p. pnp(ℵ)n ,

Ak∆,nrk∆∆ – dk∆,n w.p. (1 – pn)p(ℵ)n ,

Ak∆,nrk∆∆ – uk∆,n w.p. pn
(
1 – p(ℵ)n

)
,

dk∆,n – Ak∆,nrk∆∆ w.p. (1 – pn)
(
1 – p(ℵ)n

)
(53)

The conditional expected payoff is

E
[
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

]
= ∆(ℵ)

k∆

(
2pℵn – 1

) [
pnuk∆,n – (1 – pn)dk∆,n + (1 – 2pn)Ak,nrk∆∆

]
(54)

with uk∆,n and dk∆,n given by equation (17).
We write

pℵn =
(1 + λ(ℵ)∆

√
∆)

2 (55)

where, 0 < λ(ℵ)∆

√
∆ ≤ 1, for any finite value of ∆. λ(ℵ)∆ is referred to as ℵ’s

information intensity. Again assuming o(∆) = 0,

E
[
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

]
= 2
√
pn(1 – pn) λ(ℵ)∆ ∆(ℵ)

k∆ψk∆,n∆ (56)

It is sufficient to require terms of o(∆) to vanish in order to apply invariance
principles, such as that by Donsker and Prokhorov, to obtain the continuum
limits of this discrete formulation.

Under the same assumption, the conditional variance of ℵ’s payoff is

Var
[
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

]
=
(
∆(ℵ)
k∆ψk∆,n

)2
∆ (57)

The instantaneous information ratio is then

IR
(
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

)
=

E
[
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

]
√
Var

[
P(ℵ;forward)k∆→(k+1)∆ | F (n,ℵ)

k

]
∆

= 2
√
pn(1 – pn)λ(ℵ)∆ (58)

As λ(ℵ)∆ is positive, the information ratio on the payoff of ℵ’s strategy
increases: as ℵ’s information intensity increases, and when pn → 1/2.
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Expressed differently, when pn ↓ 0 or pn ↑ 1, the price movement becomes
obvious to all traders and ℵ can therefore be “no more informed” than a
noisy trader.

To hedge the short position in the option, ℵ executes the positions
equation (19), while simultaneously running the futures trading strategy.
This leads to an enhanced price process for ℵ, the dynamics of which can
be expressed as

A(ℵ)(k+1)∆,n =



A(u)(k+1)∆,n +∆(ℵ)
k∆

(
A(u)(k+1)∆,n – Ak∆,n(1 + rk∆∆)

)
w.p. pnp(ℵ)n ,

A(d)(k+1)∆,n +∆(ℵ)
k∆

(
Ak∆,n(1 + rk∆∆) – A(d)(k+1)∆,n

)
w.p. (1 – pn)p(ℵ)n ,

A(u)(k+1)∆,n +∆(ℵ)
k∆

(
Ak∆,n(1 + rk∆∆) – A(u)(k+1)∆,n

)
w.p. pn

(
1 – p(ℵ)n

)
,

A(d)(k+1)∆,n +∆(ℵ)
k∆

(
A(d)(k+1)∆,n – Ak∆,n(1 + rk∆∆)

)
w.p. (1 – pn)

(
1 – p(ℵ)n

)
(59)

k = 0, 1, . . . ,n – 1, n∆ = T. The price change of the process (59) is

c(ℵ)(k+1)∆,n = A
(ℵ)
(k+1)∆,n – Ak∆,n, k = 0, . . . ,n – 1, c(ℵ)0,n = 0 (60)

Conditionally on F (n,ℵ)
k , and using equation (17),

E
[
c(ℵ)k+1∆,n|F

(n,ℵ)
k

]
= φk∆,n∆ +∆(ℵ)

k∆λ
(ℵ)
∆

√
pn(1 – pn) ψk∆,n∆ ,

Var
[
c(ℵ)k+1∆,n|F

(n,ℵ)
k

]
=
(
1 +
(
∆(ℵ)
k∆

)2)
ψ2k∆,n∆

(61)

It is in ℵ’s interest to find the value of ∆(ℵ)
k∆ which maximizes the

conditional Markowitz’ expected utility function,

U
(
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

)
= E

[
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

]
– α(ℵ) Var

[
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

]
(62)

where α(ℵ) ≥ 0 is ℵ’s risk-aversion parameter. Using equation (61),
U
(
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

)
is maximized for

∆
(ℵ,opt)
k∆t =

√
pn(1 – pn) λ(ℵ)∆

2α(ℵ)ψk∆,n
(63)

Under the optimal value,

E
[
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

]
= φk∆,n∆ + pn(1 – pn)

2α(ℵ)
(
λ(ℵ)∆

)2
∆,

Var
[
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

]
= [H(ℵ)ψk∆,n]2∆,

H(ℵ) =

√√√√1 + pn(1 – pn)
[

λ(ℵ)∆

2α(ℵ)ψk∆,n

]2 (64)

and the instantaneous conditional market price of risk for ℵ is

Φ
(
c(ℵ)(k+1)∆,n | F (n,ℵ)

k

)
=
E
[
c(ℵ)(k+1)∆,n | F (n,ℵ)

k

]
– χk∆,n∆√

Var
[
c(ℵ)(k+1)∆,n | F (n,ℵ)

k

]
∆

=
φk∆,n – χk∆,n +

(
λ(ℵ)∆

)2
pn(1 – pn)/(2α(ℵ))

H(ℵ)ψk∆,n

(65)
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If ℵ had not traded futures on the information possessed, the trader’s
instantaneous conditional market price of risk would have been the same
as a noisy trader

Φ
(
c(k+1)∆,n | F (n)

k

)
=
E
[
c(k+1)∆,n | F (n)

k

]
– χk∆,n∆√

Var
[
c(k+1)∆,n | F (n)

k

]
∆

=
φk∆,n – χk∆,n

ψk∆,n
(66)

Thus, ℵ′s futures trading results in an (optimized) dividend Dℵ
k∆ yield over

the time interval [k∆, (k + 1)∆) determined by the solution of

φk∆,n + Dℵ
k∆ – χk∆,n

ψk∆,n
= Φ
(
c(ℵ)(k+1)∆,n|F

(n,ℵ)
k

)
(67)

Thus,

Dℵ
k∆t = (φk∆,n – χk∆,n)

[
1

H(ℵ) – 1
]
+
pn(1 – pn)λ(ℵ)

2

∆

2α(ℵ)H(ℵ)
(68)

We note that, relative to a noisy trader,

Var
[
c(ℵ)(k+1)∆,n | F (n,ℵ)

k

]
= [H(ℵ)]2ψ2k∆,n∆ ≥ ψ2k∆,n∆ = Var

[
c(k+1)∆,n | F (n)

k

]
(69)

Equality between the first and last terms in equation (69) is obtained for
pn = 0 or pn = 1 since, under these limits, all traders become aware of the
direction of the price movement.

We investigate the dividend payout Dℵ
k∆t as a function of λ(ℵ)∆ and α(ℵ).

From equation (64) we note that H(ℵ) is a monotonic function of λ(ℵ)∆ /α(ℵ)

having the limits H(ℵ) = 1 and H(ℵ) =
[√

pn(1 – pn)/(2ψk∆,n)
]
(λ(ℵ)∆ /α(ℵ)).

Under the limit H(ℵ) = 1, which corresponds to sufficiently small values of
λ(ℵ)∆ or sufficiently large values of α(ℵ),

Dℵ
k∆t =

pn(1 – pn)λ(ℵ)
2

∆

2α(ℵ)
(70)

which is always positive, increasing with λ(ℵ)∆ and decreasing as α(ℵ)

increases. Under the limit H(ℵ) =
[√

pn(1 – pn)/(2ψk∆,n)
]
(λ(ℵ)∆ /α(ℵ)), which

corresponds to sufficiently large values of λ(ℵ)∆ or sufficiently small values
of α(ℵ),

Dℵ
k∆t = (φk∆,n – χk∆,n)

[
α(ℵ)

λ(ℵ)∆

2ψk∆,n√
pn(1 – pn)

– 1
]
+
√
pn(1 – pn)λ(ℵ)∆ ψk∆,n

≈
√
pn(1 – pn)λ(ℵ)∆ ψk∆,n – (φk∆,n – χk∆,n)

(71)

In this limit, the dividend payout is essentially independent of α(ℵ).

CONCLUSION

Dynamic asset pricing based upon geometric Brownian motion [2,3] has
had a tremendous’ impact on finance theory. While having had difficulty
gaining acceptance, dynamic pricing based upon arithmetic Brownian
motion [1] has certain attractive features. The unified BBSM model of
[5] encompasses the strengths of both models. By adapting the BBSM
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framework to a model of ESG-adjusted asset valuation, we put the full
strength of the BBSMmodel to practical use. Using an empirical data set of 16
stocks taken from the Nasdaq-100, based on call option prices for 01/02/2024
we have shown that, generally, option traders were implying ESG-adjusted
prices that exceed the spot price in the out-of-the-money region, while
in-the-money, ESG-adjusted prices were lower that the spot price. A
follow-up study is required to determine how universal an observation
this may be. It would be interesting to investigate call option prices issued
during periods of bull and bear markets, and during market disruptions.

We have further extended this ESG-BBSM model to consider futures
trading strategy accessible to a trader ℵ holding information on the direction
of ESG-adjusted prices. It would be of interest to evaluate ℵ’s optimal
dividend payout by, for example, projecting it forward on the binomial
tree and computing an expected dividend at time t + T. While this could
be evaluated for a specific asset, using historical estimated values â, µ̂,
v̂, σ̂, ρ̂, r̂, ẐX;I , and a spot price St (with βt = St), there is no historical
information available for γESG, while the parameters λ(ℵ)∆ and α(ℵ) are
trader-dependent. Thus, estimates of an expected dividend payout at t + T
require an investigation of a three dimensional phase space - a fairly
daunting prospect best left for a separate study.
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APPENDICES

Appendix A. Tables

Table A1. Historical [γESGl , γESGu ] range and option price γ(ESG,imp) distribution summary statistics.

Ticker [γESGl , γESGu ] Min P25 P50 P75 Max

AAPL [–1.16, 2.05] –1.02 –0.49 –0.16 –0.06 2.42
AMAT [–0.26, 0.32] –0.50 –0.23 –0.13 –0.03 0.58
AMD [–0.34, 0.46] –0.46 –0.32 –0.18 –0.10 1.03
AMZN [–0.36, 0.33] –1.04 –0.00 0.07 0.19 0.36
ASML [–1.03, 5.00] –0.35 –0.18 –0.08 –0.01 0.53
CSX [–0.43, 0.52] –0.45 –0.25 –0.09 0.10 0.60
DLTR [–0.37, 0.29] –0.79 –0.12 0.05 0.14 0.42
EA [–0.17, 0.15] –0.89 –0.27 –0.04 –0.01 0.24
GOOGL [–0.72, 0.63] –2.97 0.00 0.12 0.31 0.50
INTC [–0.13, 0.19] –0.30 0.00 0.11 0.49 1.45
NVDA [–0.42, 0.58] –0.36 –0.18 –0.08 –0.01 1.39
PANW [–0.09, 0.09] –1.36 –0.56 –0.25 –0.04 1.08
ROST [–0.33, 0.22] –0.18 0.02 0.04 0.11 0.26
TEAM [–0.78, 0.50] –1.94 –0.67 –0.12 0.08 0.25
WBD [–5.00, 1.04] –2.33 –1.06 –0.42 –0.08 0.30
WDAY [–0.55, 0.45] –0.66 –0.05 0.04 0.41 0.74

Table A2. Adjusted closing prices on 01/02/2024 for the 16 stocks studied.

Ticker Price (USD)

AAPL 185.64
AMAT 154.37
AMD 138.58
AMZN 149.93
ASML 716.92
CSX 34.62
DLTR 142.54
EA 135.78
GOOGL 138.17
INTC 47.80
NVDA 481.68
PANW 288.92
ROST 137.68
TEAM 226.67
WBD 11.66
WDAY 268.28
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Appendix B. Plots of empirical option data C(emp)

Figure B1 plots the empirical call option contract prices C(emp) as a
function of strike price K and time to maturity T for the eight companies
for which Z(X,^NDX)t > 0 for t = 01/02/2024 while Figure B2 plots the same for
the eight companies for which Z(X,^NDX)t < 0 for t = 01/02/2024.

Figure B1. Empirical option prices C(emp) for the indicated stocks with Z(X;^NDX)t > 0 on t = 01/02/2024.
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Figure B2. Empirical option prices C(emp) for the indicated stocks with Z(X,^NDX)t < 0 on t = 01/02/2024.
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Appendix C. Plots of γ(ESG,imp)

Figure C1 plots γ(ESG,imp) as a function of strike price K and time to
maturity T for the eight companies for which Z(X,^NDX)t > 0 on t = 01/02/2024.

Figure C1. Implied surfaces γ(ESG,imp) for the indicated stocks with Z(X;^NDX)t > 0 on t = 01/02/2024.
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Figure C2. Implied surfaces γ(ESG,imp) for the indicated stocks with Z(X,^NDX)t < 0 on t = 01/02/2024.

Figure C2 plots γ(ESG,imp) for the eight companies for which Z(X,^NDX)t < 0
on t = 01/02/2024.
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Figure C3. Contours of γ(ESG,imp) for the indicated stocks with Z(X;^NDX)t > 0 on t = 01/02/2024.

Figure C3 plots contours of γ(ESG,imp) as a function of strike price K and
time to maturity T for the eight companies for which Z(X,^NDX)t > 0 for
t = 01/02/2024, while Figure C4 plots the same for the eight companies for
which Z(X,^NDX)t < 0 for t = 01/02/2024.
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Figure C4. Contours of γ(ESG,imp) for the indicated stocks with Z(X,^NDX)t < 0 on t = 01/02/2024.
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Figure C5. Box-whisker summaries of the distribution of γ(ESG,imp) values for all 16 stocks studied. The
horizontal dotted-line indicates the value γ(ESG,imp) = 0.

Figure C5 presents the box-whisker summaries of the distributions of
γ(ESG,imp) values for each of the 16 stocks.
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Appendix D. Plots of a(imp)
t

Figure D1. Surfaces of A(imp)
t for the indicated stocks with Z(X;^NDX)t > 0 on t = 01/02/2024.

Figure D1 plots A(imp)
t as a function of strike price K and time to maturity

T for the eight companies for which Z(X,^NDX)t > 0 for t = 01/02/2024, while
Figure D2 plots the same for the eight companies for which Z(X,^NDX)t < 0 for
t = 01/02/2024.
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Figure D2. Surfaces of A(imp)
t for the indicated stocks with Z(X,^NDX)t < 0 on t = 01/02/2024.
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Figure D3. Contours of A(imp)
t for the indicated stocks with Z(X;^NDX)t > 0 on t = 01/02/2024.

Figure D3 plots contours of A(imp)
t as a function of strike price K and

time to maturity T for the eight companies for which Z(X,^NDX)t > 0 for
t = 01/02/2024 while Figure D4 plots the same for the eight companies for
which Z(X,^NDX)t < 0 for t = 01/02/2024.
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Figure D4. Contours of A(imp)
t for the indicated stocks with Z(X,^NDX)t < 0 on t = 01/02/2024.
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