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ABSTRACT
Recently, a seminal model, called the omnigenic model, is proposed for 
understanding complex traits such as schizophrenia. In this study, we 
examined this model in Alzheimer’s disease and Parkinson’s disease 
from the perspectives of expression spectrum, shared disease-
associated genes, common biological pathways, organ specificities, 
and network properties. Our results support the arguments brought 
forward by the omnigenic model. Although we only provided the limited 
evidence for the omnigenic model in neurodegenerative diseases, we 
hope that our effort can improve the understanding of these diseases 
and thus spur new ideas on how to prevent and treat them. The most 
important information we try to convey in our study is that there are 
more genes than we expected playing a role in the pathogenesis 
of neurodegenerative diseases and it is insufficient to study these 
diseases only focusing on some core genes or genetic pathways.
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Complex traits such as height and intelligence are always a fascinating 
research topic for geneticists. Two central questions on complex traits 
are how many genes are exactly behind a complex trait and whether 
they equally contribute to such a trait. In the era of genome project 
and next-generation sequencing, we seem to be approaching to the 
answers for these two questions. Nevertheless, the big data of this era 
only bring us confounding results instead of definitive answers. The 
study of complex traits with common SNPs shows that all autosomal 
SNPs contribute to the 45 % variance in height and the variance 
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explained by each chromosome is proportional 
to its length [1]. In another word, each gene in an 
individual’s genome could probably make its tiny 
contribution to his or her height. For complex 
diseases, such answer is obviously far beyond 
satisfaction, because we are trying to seek possible 
treatment, not probable statement.

In a recently published seminal paper, Boyle 
et al .  proposed a new omnigenic model for 
understanding complex diseases [2]. The omnigenic 
model proposes that all genes expressed in disease-
relevant cells have the influence on the functions 
of core disease-related genes and thus the genetic 
propensity for complex diseases can lay outside 
core gene pathways. The hypothesis behind the 
omnigenic model is that all genes expressed in a 
cell are tightly interconnected by an omnibus gene 
regulatory network and thus each of them can 

affect the development of disease. We found this 
model both troubling and enlightening and tested it 
with Alzheimer’s disease and Parkinson’s disease 
microarray data. Both of them are neurodegenerative 
diseases, whose causes are still poorly understood [3, 

4].

First, we downloaded the expression data of 
Alzheimer’s disease and Parkinson’s disease from 
GEO database and then identified the differentially 
expressed genes (DEGs) between cases and 
controls in each dataset. The DEGs are classified 
into two categories --- down-regulated genes and 
up-regulated genes (Table 1). Our result shows 
the number of down-regulated genes and up-
regulated genes varies from dataset to dataset, 
which is ranging from a few of thousands to a couple 
of hundreds. Accordingly, the gene expression 
spectra are widely different among different disease 
datasets.

Second, we tried to find the common DEGs 
in  down- regu la ted  gene  ca tegory  and  up-
regulated gene category for Alzheimer’s disease 
and Parkinson’s disease, respectively. Among 
four Alzheimer’s disease datasets, just dozens of 
common DEGs were found in both down-regulated 

genes and up-regulated genes (Fig. 1a and 1b). 
Among five Parkinson’s disease datasets, only 
three common DEGs were found in down-regulated 
genes whereas no common DEG was found in up-
regulated genes. Certainly, there exists a possibility 
that these disease cases share some prominent 

Table 1. The number of differentially expressed genes (DEGs) in each microarray dataset.

Number of differentially expressed genes (DEGs)

Disease (GEO accession number) Down-regulated Up-regulated

Alzheimer’s Disease (GSE28146) 298 669

Alzheimer’s Disease (GSE48350) 1201 1973

Alzheimer’s Disease (GSE1297) 217 215

Alzheimer’s Disease (GSE26927) 106 97

Parkinson’s disease (GSE7621) 268 354

Parkinson’s disease (GSE8397) 1342 1806

Parkinson’s disease (GSE49036) 968 531

Parkinson’s disease (GSE20295) 249 435

Parkinson’s disease (GSE26927) 641 823
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common core gene pathways, although they 
share very few common genes. To for or against 
such possibility, we performed the gene-GO term 
enrichment analyses for 1300 down-regulated genes 
and 1651 up-regulated genes in Alzheimer’s disease 
and 2042 down-regulated genes and 2469 up-
regulated genes in Parkinson’s disease. The gene-
GO term enrichment results are shown in Fig. 2. 
Although a couple of thousands of genes were used 
for each gene-GO term enrichment analysis, the 
most significant biological processes only contain 
a dozens of genes in each GO analysis. For the 

down-regulated genes in Alzheimer’s disease and 
Parkinson’s disease, their significant biological 
processes mainly involve in metabolic processes but 
not conspicuous cell degenerative pathways such as 
apoptotic process as we expected. Furthermore, the 
down-regulation of cell metabolism is a result of cell 
death but not a cause for it [5]. Apparently, there are 
very few shared genes among different Alzheimer’s 
disease datasets or Parkinson’s disease datasets 
and our GO analyses failed to detect any common 
initiation for the neuron degeneration process in 
Alzheimer’s disease and Parkinson’s disease.

Fig. 1 Venn diagram of DEGs in Alzheimer’s disease datasets and Parkinson’s disease datasets. 
a. Down-regulated genes in four Alzheimer’s disease datasets. b. Up-regulated genes in four Alzheimer’s 
disease datasets. c. Down-regulated genes in five Parkinson’s disease datasets. d. Up-regulated genes in five 
Parkinson’s disease datasets. AD stands for Alzheimer’s disease and PD stands for Parkinson’s disease.
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Third, we checked the expression levels of DEGs 
in normal organs, since the omnigenic model states 
that all genes expressed in disease-relevant cells 
can have the influence on the disease development 
process. And vice versa, the disease must have 
the impact on their expression level in disease-
relevant organs. Fig. 3 shows the expression levels 
of down-regulated genes and up-regulated genes in 
four Alzheimer’s disease dataset among six normal 
human organs. The down-regulated genes in four 
Alzheimer’s disease datasets exhibit a statistically 
higher expression level in brain and cerebellum 
than heart, liver, kidney, liver and testis while the 
up-regulated genes don’t (Fig. 3a and 3b). In five 
Parkinson’s disease datasets, the down-regulated 
genes show a similarly higher expression pattern in 

brain and cerebellum, although such pattern is less 
obvious in dataset GSE20295 (Fig. 4a). Moreover, 
the up-regulated genes in five Parkinson’s disease 
datasets show a more diversified expression pattern 
(Fig. 4b), which suggests that the pathogenic process 
might be more complex in Parkinson’s disease than 
in Alzheimer’s disease. Fig. 3 and 4 actually show 
that these down-regulated genes are specifically 
expressed in normal central nervous system (CNS), 
because they have a higher expression level in 
brain and/or cerebellum compared to the other four 
organs. That the CNS-specifically-expressed genes 
are down-regulated in neurodegenerative diseases 
is consistent with the assumption of the omnigenic 
model.

Fig. 2 GO term enrichment results for DEGs in Alzheimer’s disease and Parkinson’s disease.  a. GO term 
enrichment for down-regulated genes in Alzheimer’s disease.  b. GO term enrichment for up-regulated genes 
in Alzheimer’s disease.  c. GO term enrichment for down-regulated genes in  Parkinson’s disease.  d. GO term 
enrichment for up-regulated genes in Parkinson’s disease. AD stands for Alzheimer’s disease and PD stands for 
Parkinson’s disease.
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Fig. 3 The expression level of DEGs from four Alzheimer’s disease datasets in six normal human organs.  
a. The expression level of down-regulated genes in six organs. b. The expression level of up-regulated genes in 
in six organs. The star indicates the statistical difference between two gene sets  (P-value < 0.01, Wilcoxon test 
and Kolmogorov–Smirnov test). The color of star indicates the corresponding organ.



Evidence from Neurodegenerative DiseasesLibing Shen   et al. 

JPBS  2017, 2(6); 3 | Email: jpbs@qingres.com                                                                                                  December 25, 20176

Fig. 4 The expression level of DEGs from five Parkinson’s disease datasets in six normal human organs. 
a. The expression level of down-regulated genes in six organs.  b. The expression level of up-regulated genes in 
in six organs. The star indicates the statistical difference between two gene sets  (P-value < 0.01, Wilcoxon test 
and Kolmogorov–Smirnov test). The color of star indicates the corresponding organ.
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Finally, we examined the network properties of 
the down-regulated genes in Alzheimer’s disease 
and Parkinson’s disease using both protein-protein-
interaction information and gene co-expression 
information. The key point in omnigenic model is 
that all genes expressed in disease-relevant cells 
are sufficiently interconnected by gene regulatory 
networks. Because our result shows that the down-
regulated genes in neurodegenerative diseases are 
also CNS-specifically-expressed genes, we infer 
that the down-regulated genes in neurodegenerative 
diseases must constitute a biological network which 
can be characterized by the power-law degree 
distribution and hierarchical structure [6]. Fig. 5a 
shows that the degree distribution of the down-
regulated genes in Alzheimer’s disease to the 
probability P(k) fits the power law in protein-protein-
interaction networks (the power-law fit is shown as 
a red line, R2 = 0.94, P-value < 2×10−16). Fig. 5b 
shows that the scaling of the clustering coefficient 
of the down-regulated genes in Alzheimer’s disease 
follows C(K)~K−1 in protein-protein-interaction 
networks (which is shown in a red straight line with 
negative slope, R2 = 0.37, P-values < 2×10−16). Our 

network property analyses also show that the down-
regulated genes in Parkinson’s disease have the 
same network properties as the ones in Alzheimer’s 
disease in protein-protein-interaction network (Fig. 
5c and 5d). The network analysis based on gene co-
expression information shows a similar result for the 
down-regulated genes in Alzheimer’s disease and 
Parkinson’s disease (Fig. 6a, 6b, 6c and 6d). That 
a gene set’s degree distribution fits the power law 
indicates that they constitute a scale-free network 
(there exist a small number of highly connected 
nodes, known as hubs, within the network). And 
the scaling of the clustering coefficients of two sets 
of down-regulated genes show that they have a 
hierarchical network structure as a protein-protein 
interaction network (sparsely connected nodes are 
part of highly clustered areas and different clustered 
areas are communicated by a few hubs). The 
hierarchical network structure exhibits the small-
world property of disease-related genes, which 
is predicted by Boyle et al’s paper [2]. Thus, the 
results of our network analyses further support the 
omnigenic model.

Fig. 5 Protein-protein-interaction (PPI) network properties of down-regulated genes in Alzheimer’s 
disease and Parkinson’s disease.  a. PPI degree distribution of down-regulated genes in Alzheimer’s disease. 
b. Scaling of the PPI clustering coefficient in down-regulated genes in Alzheimer’s disease.  c. PPI degree 
distribution of down-regulated genes in Parkinson’s disease.  d. Scaling of the PPI clustering coefficient in down-
regulated genes in Parkinson’s disease.
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There is a major difference between two network 
analysis results. The coefficient of determinations 
(R2) are smaller in gene co-expression network 
analyses than in protein-protein-interaction ones. 
We find that gene’s average degree and clustering 
coefficient is much higher in gene co-expression 
networks than in protein-protein-interaction networks 
and the genes with high degree and clustering 
coefficient in gene co-expression networks also 
outnumber their counterparts in protein-protein-
interaction networks. For example, for the down-
regulated genes in Alzheimer’s disease, the protein-

Fig. 6 Co-expression network properties of down-regulated genes in Alzheimer’s disease and 
Parkinson’s disease.  a. Co-expression degree distribution of down-regulated genes in Alzheimer’s disease. 
b. Scaling of the co-expression clustering coefficient in down-regulated genes in Alzheimer’s disease.  c. Co-
expression degree distribution of down-regulated genes in Parkinson’s disease.   d. Scaling of the co-expression 
clustering coefficient in down-regulated genes in Parkinson’s disease.

protein-interaction network analysis shows that they 
have the highest degree of 50 while the gene co-
expression one shows that they have the highest 
degree of 250 (Fig. 5a and Fig. 6a), which suggests 
that the protein-protein-interaction information might 
be limited. This limitation could lead to bias in our 
network analyses, although the bias is favorable 
towards our conclusion. In order to rule out such 
bias in our study, we performed the network property 
analysis for all genes with protein-protein interaction 
information and used them as the background (total 
17644 genes). The result shows that all genes with 
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Supplementary Fig. 1 Protein-protein-interaction (PPI) network properties of 17644 genes.   a. Their PPI 
degree distribution. b. Scaling of the PPI clustering coefficient in them.

protein-protein interaction information also constitute 
a genuine biological network (scale-free and highly 
modular, Supplementary Fig. 1). Consequently, 
our network analysis in Figure 5 is less likely to be 
biased since it is based on a small protein-protein-
interaction network from a much bigger one. In 

addition, the large average degree and clustering 
coefficient from gene co-expression network analysis 
propose that the down-regulated genes in disease 
samples are often expressed in a modular fashion in 
normal brain regions.

In this comment, we used the expression data 
from Alzheimer’s disease and Parkinson’s disease 
to verify the omnigenic model in neurodegenerative 
diseases. We originally felt some qualm about this 
model, because it provides more challenge for those 
like us who work in the field of complex diseases. 
To our surprise, our results fully support it, although 
we have to say that our evidence is circumstantial. 
However, acquiring direct evidence for this model 
would not be an easy task. First, we should know 
how many genes are exactly expressed in a 
disease-relevant cell. Then, we have to thoroughly 
understand the cellular network in order to separate 
peripheral genes from core genes, since they 
play different roles in disease pathogenesis. In 
our view, the most important information that the 
omnigenic model conveys is that new methods, both 
experimental and bioinformatic ones, are needed for 
studying the complex diseases such as Alzheimer’s 
disease and Parkinson’s disease, because there are 

more genes than we expected participating in the 
process of neurodegenerative disease development.

1 METERIALS AND METHODS

1.1 Microarray data and detection of 
differentially expressed genes
All microarray datasets used in this study were 
downloaded from GEO database. Four datasets 
are Alzheimer’s disease, which are GSE28146 (15 
cases and 8 controls), GSE48350(19 cases and 43 
controls), GSE1297 (15 cases and 9 controls), and 
GSE26927 (11 cases and 7 controls). Five datasets 
are Parkinson’s disease, which are GSE7621(16 
cases and 9 controls), GSE8397(29 cases and 16 
controls), GSE49036 (16 cases and 8 controls), 
GSE20295 (12 cases and 18 controls),  and 
GSE26927 (10cases and 10 controls). The detailed 
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disease information for each dataset has been 
shown in previous studies [7-13].

In each dataset, the expression counts for each 
gene were normalized with the quantile algorithm 
in the limma package under R environment [14]. 
Differentially expressed genes (DEGs) were detected 
by limma package using linear models with a cutoff 
P-value < 0.01.

1.2 GO term enrichment analysis
To test whether there exist certain common 
biological pathways in both diseases, we used the 
clusterProfiler package to perform gene-GO term 
enrichment analyses for the combined DEGs in 
Alzheimer’s disease or Parkinson’s disease [15]. 
To visualize the GO results, we used the ggplot2 
package for GO result display.

1.3 RNA-Seq data for six human organs
The RNA-Seq data of six human organs (brain, 
cerebellum, heart, kidney, liver, and testis) were 
downloaded from the supplementary information of 
Brawand et al. [16]. We calculated the RPKM (Reads 
Per Kilobase per Million mapped reads) value for 
each gene based on the downloaded data (unique 
read coverage per exon). Due to the uneven number 
of samples in some organs from some species, 
we used the mean RPKM value if multiple RPKM 
values were available for each human organ. We 
transformed the RPKM values into the log2(RPKM) 
values and then calculated the Z-score for every 
log2(RPKM) value within each organ, in order to 
render the gene expression values comparable 
among different organs.

1.4 Statistical analysis and data display
The R package (version 3.2.4) was used to perform 
statistical analyses in this study. Both Wilcoxon 
test and Kolmogorov–Smirnov test were employed 
to compare the expression level of the DEGs in 
Alzheimer’s disease or Parkinson’s disease among 
six human organs and P-value smaller than 0.01 was 
viewed as statistically significant. The R package 
VennDiagram was used for Venn diagram plotting [17].

1.5 Network property analysis
We downloaded the protein-protein interaction (PPI) 
information from mentha database and the gene co-
expression information from www.brainExp.org, a 
website hosting the gene co-expression data from 
different brain regions, age stages, and genders [18]. 
These information were used to perform the network 
property analysis in this study. We filtered non-
human proteins for PPI network analysis and only 
used a node gene’s top 5 % of positively correlated 
co-expression gene partners (weighted correlation > 
0.3) for co-expression network analysis.

We used  the  down- regu la ted  genes  in 
Alzheimer’s disease or Parkinson’s disease for 
network property analysis, because they are 
specifically expressed in central nervous system 
(brain and cerebellum) while the down-regulated 
ones don’t  exhibi t  a uniform t issue-specif ic 
expression pattern. According to the omnigenic 
model, a cellular regulatory network is made of the 
genes specifically expressed in a cell type.

For each down-regulated gene, we calculated 
its degree k and clustering coefficient C(k) using 
both protein-protein interaction information and gene 
co-expression information. Degree is a measure 
of a node’s connectivity in a network. In protein-
protein interaction network, it measures how many 
interaction neighbors (neighbor genes) a specific 
gene has. In gene co-expression network, i t 
measures how many co-expression gene partners a 
specific gene has. Clustering coefficient measures 
a node’s modularity in a network, i.e. the degree to 
which nodes in a network tend to cluster together. In 
cellular network, modularity implies certain biological 
function.

The clustering coefficient is mathematically 
defined as follows [6]:

where n is the number of direct links among 
a specific gene’s neighbors or its co-expression 
partners and k(k −1)/2 is the total possible number of 
direct links among its neighbors or partners.
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