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ABSTRACT 

The adhesion G-protein coupled receptors (aGPCRs) are a family of 33 G-
protein receptors consisting of ADGRA1-3, ADGRB1-3, ADGRC1-3, ADGRD1-
2, ADGRE1-5, ADGRF1-5, ADGRG1-7, ADGRL1-4, and ADGRV1. Recent 
studies have unveiled the role of aGPCRs in numerous brain functions, 
including in neurodevelopment, synapse formation and maintenance, 
establishment of the blood-brain barrier, and myelination. Further, 
dysfunction of aGPCRs have been associated with disorders such as 
gliomas, depression, and epilepsy, among many others. Herein, we review 
generalized properties of aGPCRs, their brain-specific expression, 
associations with neurological and psychiatric diseases, and potential as 
future pharmacological targets. 
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ABBREVIATIONS 

aGPCR, adhesion G protein-coupled receptor; GPCR, G protein-coupled 
receptor; 7TM, seven-transmembrane pass; NTF, N-terminal fragment; 
GAIN, GPCR autoproteolysis-inducing domain; CTF, C-terminal fragment; 
cryo-EM, cryogenic electron microscopy; LRR, leucine-rich repeat; Ig, 
immunoglobulin-like; EGF, epidermal growth factor-like; EAR, epilepsy 
associated repeat; CUB, complement C1r/C1s, Uegf, Bmp1 domain; TSR, 
type-1 thrombospondin repeat; GBL, galactose-binding lectin domain; Cad, 
Cadherin repeat; HBD, hormone binding domain; GPS, GPCR proteolysis 
site; Lam, laminin domain; PLL, pentraxin/laminin/neurexin/sex-
hormone-binding-globulin-like domain; RBL, rhamnose-binding lectin; 
OLMD, olfactomedin-like domain; LAG, laminin G-like; EAR, epilepsy-
associated repeat; PDB, pentraxin-binding domain; SEA, sea urchin sperm 
protein/enterokinase/agrin module; Calxβ, Calx-beta motif; PBM, PDZ 
binding motif; RGD, Arg-Gly-Asp motif; PRS, proline-rich sequence; ECL, 
extracellular loops; ICL, intracellular loops; PV+, paralvbumin-positive; 
BBB, blood-brain barrier; TBI, traumatic brain injury; ASD, autism 
spectrum disorder; MDB2, methyl-CpG binding domain protein 2; EZH2, 
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Enhancer of zeste homolog 2; C1QL, component complement 1, Q 
subcomponent-like; SNP, single nucleotide polymorphism; OPC, 
oligodendrocyte precursor cell; FLRT, fibronectin-leucine-rich 
transmembrane protein; ADHD, attention-deficient hyperactivity disorder. 

INTRODUCTION 

The aGPCRs are a family of GPCRs with diverse functions. Despite the 
prevalence of many aGPCRs in brain tissue, most remain understudied in 
the context of the nervous system. The aGPCRs are comprised of 33 
proteins, organized into nine subfamilies: ADGRA1-3, ADGRB1-3, ADGRC1-
3, ADGRD1-2, ADGRE1-5, ADGRF1-5, ADGRG1-7, ADGRL1-4, and ADGRV1 
[1]. Understanding the functionality of aGPCRs is critical in developing 
new pharmacological therapies, as 36% of all approved drugs target GPCRs 
[2]. In this review, we provide a brief overview of currently understood 
structural properties and signaling modalities of aGPCRs. We then 
consider roles for aGPCRs in the context of nervous system functions such 
as neurodevelopment, synapse modulation, brain vascularization, and 
myelination. Further, we discuss neurological and psychiatric disorders 
that arise from aGPCR dysfunction and their capabilities as drug targets. 

METHODS 

Searches on PubMed were made for each individual aGPCR using all 
alternative names. As examples, a search for ADGRG1 included “adgrg1 OR 
gpr56” and a search for ADGRV1 included “adgrv1 OR vlgr1 OR gpr98”. 
Primary articles related to structure, potential signaling pathways, 
nervous system function, and associated neurological or psychiatric 
disorders were reviewed. Particular focus was given to papers published 
after 2019 to build upon existing aGPCR reviews [3,4]. 

For the purposes of this review, the aGPCRs will herein be referred to 
using the nomenclature established by the aGPCR Consortium and 
International Union of Basic and Clinical Pharmacology [1]. Alternative 
names are also provided in Table 1. Gene and protein nomenclature in this 
review follow conventions for the species of interest in the reviewed 
publications. When a specific species is not discussed, human 
nomenclature is used by default. 

To understand the tissue-specific and brain-specific expressions of 
aGPCRs, we analyzed datasets from the Human Protein Atlas and the Allen 
Brain Atlas. Each aGPCR and their alternative names were queried in the 
Human Protein Atlas to identify tissue specificity, highest brain region 
expression, expression cluster, brain expression cluster, and single cell 
type specificity [5]. The Human Multiple Cortical Areas SMART-Seq 
trimmed-means dataset from the Allen Brain Atlas was used to identify 
brain-specific aGPCR expression [6]. Cell types were determined and 
categorized following the taxonomy provided by the Allen Brain Atlas 
dataset. 
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OVERVIEW OF ADHESION G-PROTEIN COUPLED RECEPTORS 

G protein-coupled receptors (GPCRs) are a large superfamily of over 800 
described signal transduction-inducing membrane proteins [7] defined by 
the highly structurally conserved seven-transmembrane pass (7TM) 
helical structure [8]. GPCRs are ubiquitous in eukaryotes [9], with 
functional roles in many critical physiological contexts [10]. The GPCR 
superfamily is grouped into five major families in vertebrates: Glutamate, 
Rhodopsin, Frizzled/Taste2, Secretin, and Adhesion [11]. aGPCRs 
expressions vary throughout the body and brain, which are summarized 
in Table 1 and Figure 1. 

aGPCRs are the second largest family of GPCR, with 31 described 
members in mice and 33 described members in humans [12]. Unlike other 
GPCR superfamilies, aGPCRs interact with other proteins for activation; 
most of these proteins are cell membrane-anchored, extracellularly 
secreted, or in the extracellular matrix. Like other GPCRs, aGPCRs also 
contain intracellular domains that can recruit protein scaffolds [13], G 
proteins for signal transduction [14,15], and proteins involved in non-G 
protein dependent signal transduction cascades, such as β-arrestin, Rac, 
Rho, and Wnt/β-catenin [4]. 

However, despite their numbers and high expression across a variety 
of tissues, aGPCRs remain the least characterized GPCR superfamily; many 
aGPCRs are orphan receptors with limited understanding of downstream 
signaling pathways (Table 2, Figures 2 and 3) [16]. Additionally, no specific 
small molecule ligands have been identified for a majority of aGPCRs [17], 
and those that exist target only the ADGRG subfamily with low specificity 
[18]. aGPCRs more broadly also lack the microscale activation switch—a 
structural state where residues form contacting interactions that are 
found in both the active and inactive state. Instead, they can rapidly enter 
active state contacts upon binding to inverse agonists [19]—common to all 
other GPCR superfamilies [20], further obfuscating models of aGPCR 
activation. Similarly, the aGPCRs display remarkable selectivity and 
diversity, both between and within subfamilies; for example, though some 
aGPCR subfamilies and individual subfamily members contain many of 
the same adhesion domains, structural changes due to the presence of 
other domains and post-translational modifications significantly changes 
their adhesion properties and, presumably, activation mechanisms 
related to adhesion [4]. Thus, research into aGPCRs offer many 
opportunities to study both these unique receptors and the mechanisms of 
structural divergence between GPCR superfamilies.
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Table 1. Members of the aGPCR family. aGPCR alternative name(s) [1], tissue specificity, brain region expression, general expression cluster, brain 
expression cluster, and single cell type specificity data from the Human Protein Atlas [5]. 

aGPCR Alternative Name (s) Tissue Specificity Highest Brain 
Region Expression 

Expression Cluster Brain Expression 
Cluster 

Cell Type Specificity 

ADGRA1 GPR123 Enriched in brain Habenula Brain—neuronal 
signaling 

Brain—neuronal 
signaling 

OPCs, excitatory neurons, horizontal cells, 
inhibitory neurons 

ADGRA2 GPR124 Expressed across 
many or all 
tissues 

Retina Connective tissue—
extracellular matrix 
organization 

Cerebral cortex—mixed 
function 

Lymphatic endothelial cells, Leydig cells, 
smooth muscle cells, endometrial stromal 
cells, peritubular cells, fibroblasts, 
adipocytes, muller glia cells 

ADGRA3 GPR125 Enriched in liver Choroid plexus Liver—oxidoreductase 
activity 

Astrocytes—mixed 
function 

Astrocytes, hepatocytes 

ADGRB1 Brain-specific 
Angiogenesis Inhibitor 
(BAI) 1 

Enriched in brain Precentral gyrus Astrocytes—astrocyte-
neuron interactions 

Astrocytes—astrocyte-
neuron interactions 

OPCs, astrocytes, horizontal cells, 
excitatory neurons, inhibitory neurons, 
bipolar cells 

ADGRB2 Brain-specific 
Angiogenesis Inhibitor 
(BAI) 2 

Enriched in brain Hippocampus Neurons—mixed 
function 

Neurons—mixed 
function 

Excitatory neurons, horizontal cells, 
astrocytes, OPCs, inhibitory neurons, 
bipolar cells 

ADGRB3 Brain-specific 
Angiogenesis Inhibitor 
(BAI) 3 

Enriched in brain Hippocampus Neurons—mixed 
function 

Neurons—mixed 
function 

Excitatory neurons, horizontal cells, 
astrocytes, oligodendrocyte precursor cells 
(OPCs), inhibitory neurons, bipolar cells 

ADGRC1 Cadherin EGF LAG 
seven-pass G-type 
receptor (CELSR) 1 

Enhanced in skin Corpus callosum Skin—cornification Brainstem—mixed 
function 

Ciliated cells, glandular and luminal cells, 
Club cells, Alveolar cells type 1, basal 
respiratory cells, ionocytes 

ADGRC2 Cadherin EGF LAG 
seven-pass G-type 
receptor (CELSR) 2 

Enhanced in brain 
and skin 

Dentate gyrus Nonspecific—
endocytosis 

Neurons—mixed 
function 

Horizontal cells, oligodendrocytes 

ADGRC3 Cadherin EGF LAG 
seven-pass G-type 
receptor (CELSR) 3 

Enhanced in 
brain, pituitary 
gland 

Flocculonodular 
lube 

Cerebellum—nervous 
system development 

Cerebellum—nervous 
system development 

Cone photoreceptor cells, horizontal cells, 
bipolar cells, rod photoreceptor cells, 
inhibitory neurons, excitatory neurons 

ADGRD1 GPR133 Enhanced in heart 
muscle 

Retina Smooth muscle tissue—
extracellular matrix 
organization 

Subcortical—mixed 
function 

Mesothelial cells, endometrial stromal cells, 
cardiomyocytes, Sertoli cells, fibroblasts, 
alveolar cells type 2, microglia 

ADGRD2 GPR144 Enhanced in 
seminal vesicles 

Pons Not detected—no 
cluster assigned 

Not detected—no 
cluster assigned 

Late spermatids, early spermatids 

ADGRE1 EGF-like module-
containing mucin-like 
hormone receptor-like 
(EMR) 1; F4/80 

Enhanced in bone 
marrow and 
lymphoid tissue 

Corpus callosum Lymphoid tissue—
immune response 

Macrophages and 
microglia—immune 
response 

Monocytes, Kupffer cells 
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ADGRE2 EGF-like module-
containing mucin-like 
hormone receptor-like 
(EMR) 2 

Enhanced in 
lymphoid tissue 

Retina Lymphoid tissue—
immune response 

Non-specific—immune 
response 

Monocytes, granulocytes, macrophages, 
Kupffer cells 

ADGRE3 EGF-like module-
containing mucin-like 
hormone receptor-like 
(EMR) 3 

Enhanced in bone 
marrow and 
lymphoid tissue 

Area parastriata, 
superior 

Lymphoid tissue—
immune response 

Non-specific—
vasculature 

Monocytes, macrophages, mucus glandular 
cells, microglia 

ADGRE4 EGF-like module-
containing mucin-like 
hormone receptor-like 
(EMR) 4 

No information 
available 

No information 
available 

No information 
available 

No information 
available 

No information available 

ADGRE5 CD97 Enhanced in bone 
marrow 

White matter Lymphoid tissue and 
bone marrow—innate 
immune response 

White matter—signal 
transduction 

Monocytes, NK-cells, T-cells, dendritic cells 

ADGRF1 GPR110 Enriched in 
esophagus, 
kidney, urinary 
bladder 

Not detected Epithelium—
extracellular exosomes 

Not detected—no 
cluster assigned 

Ionocytes, Club cells, collecting duct cells, 
ciliated cells, basal respiratory cells, 
glandular cells, luminal cells 

ADGRF2 GPR111 No information 
available 

No information 
available 

No information 
available 

No information 
available 

No information available 

ADGRF3 GPR113 Enhanced in 
pancreas 

Retina Stomach—proteolysis Nonspecific—
transcription 

Late spermatids, astrocytes, early 
spermatids, oligodendrocytes, microglia 

ADGRF4 GPR115 Enhanced in 
esophagus and 
skin 

Arcuate nucleus Skin—cornification Hypothalamus—
neuropeptide signaling 

Suprabasal keratinocytes, extravillous 
trophoblasts, squamous epithelial cells, 
syncytiotrophoblasts, distal enterocytes, 
basal keratinocytes 

ADGRF5 GPR116; Ig-Hepta Enhanced in lung Retina Adipose tissue—mixed 
function 

Endothelial cells—
vasculature 

Adipocytes, alveolar cells type 2, 
endothelial cells, alveolar cells type 1, 
microglia 

ADGRG1 GPR56 Enhanced in 
thyroid gland 

Amygdala Brain—neuronal 
signaling 

Brain—neuronal 
signaling 

Cytotrophoblasts, NK-cells, 
syncytiotrophoblasts, melanocytes 

ADGRG2 GPR64; HE6 Enriched in 
epididymis 

Pituitary gland Epididymis—male 
reproductive secretion 

Forebrain—mixed 
function 

Serous glandular cells, secretory cells, 
prostatic glandular cells, mucus glandular 
cells, gastric mucus-secreting cells, OPCs 

ADGRG3 GPR97 Enriched in bone 
marrow 

Area parastriata, 
superior 

Bone marrow—innate 
immune response 

Nonspecific—
vasculature 

Lymphatic endothelial cells 

ADGRG4 GPR112 Enhanced in 
fallopian tube, 
intestine, and 
retina 

Retina Intestine—digestion Not detected—no 
cluster assigned 

Enteroendocrine cells, Paneth cells 

ADGRG5 GPR114 Enriched in 
intestine and 
lymphoid tissue 

Thalamus Lymphoid tissue—
immune response 

Hindbrain—mixed 
function 

Dendritic cells, NK-cells, plasma cells, 
microglia, B-cells, T-cells 
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ADGRG6 GPR126 Enhanced in liver 
and placenta 

Retina Liver—plasma proteins Subcortical—mixed 
function 

Hepatocytes, suprabasal keratinocytes 

ADGRG7 GPR128 Enriched in 
intestine and liver 

Caudate nucleus Liver and intestine—
lipid metabolism 

Not detected—no 
cluster assigned 

Proximal enterocytes, hepatocytes, Paneth 
cells, intestinal goblet cells 

ADGRL1 Latrophilin-1, Calcium-
independent receptor of 
α-Latrotoxin (CIRL) 1, 
CL-1 

Enhanced in brain Retrosplenial 
cortex 

Astrocytes and 
cerebellum—nervous 
system development 

Astrocytes and 
cerebellum—nervous 
system development 

Horizontal cells, excitatory neurons, 
bipolar cells, inhibitory neurons 

ADGRL2 Latrophilin-2, Calcium-
independent receptor of 
α-Latrotoxin (CIRL) 2, 
CL-2 

Expressed across 
many or all 
tissues 

Cerebral cortex Adipose tissue—mixed 
function 

Neurons—mixed Excitatory neurons, inhibitory neurons 

ADGRL3 Latrophilin-3; Calcium-
independent receptor of 
α-Latrotoxin (CIRL) 3, 
CL-3 

Enhanced in brain Ventromedial 
nucleus 

Brain—neuronal 
signaling 

Brain—neuronal 
signaling 

OPCs, inhibitory neurons, excitatory 
neurons, astrocytes, oligodendrocytes 

ADGRL4 EGF, latrophilin, and 
7TM domain–containing 
protein 1 (ELTD1) 

Enhanced in 
adipose tissue 

Pituitary gland Adipose tissue—mixed 
function 

Endothelial cells—
vasculature 

Adipocytes, endothelial cells 

ADGRV1 Very-large GPCR 1; 
GPR98 

Enriched in 
adrenal gland 

Pituitary gland Adrenal gland—steroid 
metabolism 

Neurons—mixed 
function 

Astrocytes 
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Figure 1. Expression of aGPCRs in nonneuronal and neuronal cells from human cortical regions. Data were 
indexed from the Allen Brain Atlas Human Multiple Cortical Areas SMART-Seq dataset, which includes 
transcriptomes from single-nuclei in the middle temporal gyrus, anterior cingulate cortex, primary visual 
cortex, primary motor cortex, primary somatosensory cortex, and primary auditory cortex [6]. High 
expression in multiple cell types was observed for ADGRA1-3, ADGRB1-3, ADGRC1-3, ADGRF3, ADGRL1-3, 
and ADGRV1. Moderate to low cell-specific expression was detected for ADGRD1-5, ADGRF2, ADGRF3, 
ADGRF5, ADGRG1, ADGRG2, ADGRG6, ADGRG7, and ADGRL4. Expression of ADGRD2, ADGRE1, ADGRF1, 
ADGRF4, ADGRG3, ADGRG4, and ADGRG5 was not detected in any cell type. Data are represented as log10 

(trimmed means). 
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Figure 2. Basic aGPCR structure schematic and activation models. (A) The basic structure of all aGPCRs, 
highlighting the adhesive NTF, the GAIN domain, GPS site and tethered agonist (Stachel) sequence, and CTF 
with the 7TM region and intracellular tail. Individual aGPCRs vary in each of these regions, though some 
structures, such as the GAIN domain, are highly conserved. (B) Models for aGPCR functionality, including G 
protein-dependent and G protein-independent signaling and structural recruiters and/or stabilizers. All 
pathways and other roles listed have been identified as functionally relevant in one or more aGPCRs. Figure 
created using Biorender. 

 

Figure 3. aGPCR subfamily structures. Simplified schematic of aGPCR subfamily extra- and intracellular 
motifs. aGPCRs are subdivided into nine subfamilies, each beginning with the prefix “ADGR-.” Each family 
is defined by the presence of a specific combination of adhesion domains or motifs along the NTF, though 
some aGPCR subfamilies exhibit more diversity in the combination of domains between subfamily members 
than others. Structures between related domains, such as the pentraxin-binding domain (PDB), may also 
differ between aGPCR subfamilies. See related Table 2 for more details on presence and absence of domains 
and motifs within and between aGPCR subfamilies. 

Table 2. Structural domains and motifs in aGPCR subfamilies. aGPCR subfamily, binding domains, and other 
prominent NTF and CTF motifs and structures identified. Structural motifs denoted by an asterisk (*) are 
not present in all protein subfamily members. † ADGRA1/GPR123 is the only aGPCR lacking the GAIN domain. 

aGPCR Subfamily Binding Domain(s) Other Significant NTF Structures CTF Motifs and Structures 
ADGRA [21] LRR * 

Ig * 
GAIN † 
HBD * 
RGD * 

PBM 

ADGRB [22] CUB * 
TSR 

GAIN 
HBD 
RGD * 

PRS 
PBM 
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ADGRC [23] Cad 
EGF 
LAG 

GAIN PRS 

ADGRD [24] PDB * GAIN PBM 
ADGRE [25,26] EGF GAIN PBM 
ADGRF [27] EGF * 

Ig * 
GAIN * 
HBD * 
SEA * 

 

ADGRG [28,29] CUB * 
PBD * 

HBD * 
GAIN 
RGD * 

PBM 

ADGRL [24] GBL 
OLMD 

GAIN 
HBD * 

PRS 
PBM 

ADGRV [30,31] EAR 
PDB 

GAIN 
Calxβ 

PBM 

aGPCR Structure and Properties 

The overall structure of all aGPCRs is divided into the N-terminal 
fragment (NTF), the GPCR autoproteolysis-inducing (GAIN) domain, and 
the C-terminal fragment (CTF) (Figure 2A). The NTF typically is described 
as containing a large majority of the extracellular domains. The CTF 
typically is described as containing the 7TM region and all intracellular 
domains. The GAIN domain is sometimes considered as split between the 
NTF and CTF at the site of autoproteolysis, though some reviews have 
considered it a distinct region. For the purposes of this review, the GAIN 
will be discussed as a separate region. Recent advances in cryogenic 
electron microscopy (cryo-EM) have expanded our understanding of 
aGPCR structures and functionality, particularly at the GAIN and 7TM 
regions, while continued functional research continues to further our 
understanding of aGPCR binding and signaling. 

NTF Structure and Properties 

All aGPCRs NTFs contain the adhesion domains that give the aGPCRs 
their namesake and account for the majority of each aGPCR’s molecular 
weight [4]. Extensive alternative splicing [32] can also lead to large 
variations in aGPCR size and function [33]. aGPCRs use these adhesion 
domains to bind to other extracellular proteins, which can activate or 
inhibit receptor functionality. 

Each aGPCR subfamily is typically characterized by variable numbers 
of structurally well-defined and modular adhesion domains [4]. The 
presence of these domains within subfamilies, as well as extensive post-
translational modifications [34], allows for binding to a diverse set of cell 
surface and extracellular matrix proteins [32,35,36]. 

While the presence and order of adhesion domains are typically 
specific to each aGPCR subfamily, other structures within the NTF are 
shared between groups. One example is the complement C1r/C1s, Uegf, 
Bmp1 (CUB) and CUB-like adhesion domains on the ADGRB subfamily 
members, as well as on ADGRG6/GPR126. Additional motifs seem 
subfamily specific, such as the sea urchin sperm 
protein/enterokinase/agrin (SEA) module in ADGRFs and the Calxβ motif 
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in ADGRV1. These structures may also play roles in modifying adhesion 
properties through cleavage at the SEA [37] and calcium binding at Calxβ 
motifs [31]. However, the most notable instance of this interfamily domain 
sharing is the approximately 70-residue hormone-binding domain (HBD), 
which is present in the ADGRA and ADGRB subfamilies. Though the name 
implies hormone binding, no hormone has been found to bind the 
hormone domain thus far [38]. Some structural data suggests the HBD 
remains rigid [39], which may give the NTF different structural 
conformations, though more research must be conducted in this area to 
conclusively determine the function of the HBD domain. 

The GAIN Domain 

All aGPCRs except for ADGRA1/GPR123 contain the GAIN domain; 
consequentially, the GAIN domain is considered a critical feature of 
aGPCRs. This highly conserved structure was among the first structural 
characteristics of aGPCRs to be resolved via X-ray crystallography [39] and 
remains a domain of high interest within aGPCRs due to its importance for 
aGPCR signaling and functionality. 

The GAIN domain is typically split between the NTF and CTF at the 
GPCR proteolysis site (GPS). The GPS is an autoproteolysis site, wherein 
self-sufficient protease activity cleaves (denoted by ‘/’) at a highly 
conserved H or R-L/T or S consensus sequence by way of nucleophilic 
attack [40,41]. However, the NTF remains non-covalently associated with 
the CTF across the cleavage site due to protein refolding [42]. 
Autoproteolysis may be regulated by N-linked glycosylation events and 
other posttranslational modifications [43], opening additional 
complexities to existing models of aGPCR cleavage. 

After proteolysis, the GAIN domain develops unique structural 
properties. The portion upstream of the GPS is α-helix rich and contains a 
C-X-C or X-X-C sequence 6-9 residues upstream from the GPS site [42]. 
Immediately downstream of the GPS is a β-strand encoded by the highly 
conserved sequence X-F-A-V-L-M, also known as the tethered agonist or 
Stachel sequence [18,44]. This Stachel sequence is modeled to facilitate 
receptor activation [18,44], though many publications suggests that not all 
aGPCRs undergo autoproteolysis [45] and/or Stachel-promoted activation 
[46–48] under in vitro and physiological conditions [49]. 

CTF Structure and Properties 

The 7TM domain is present in all aGPCRs [50]. To that end, the aGPCR 
GAIN and 7TM domains are most often modeled as facilitating receptor 
activation together, with the GAIN domain releasing the Stachel tethered 
agonist, which can subsequently act analogously to the small peptide 
ligands of members of the Secretin-GPCR superfamily, like the glucagon-
like peptide-1 receptor [39,50]. Cryo-EM was utilized to identify 
interactions between the Stachel and 7TM region in receptors modeled to 
undergo NTF dissociation-dependent tethered agonist activation. Both 
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ADGRD1/GPR133 and ADGRG2/GPR144 undergo a structural 
reorganization, forming a binding site for the tethered agonist sequence 
within the 7TM formed from transmembrane domains 1, 4, and 5 [51]. 
Both structures were also isolated alongside Gαs, Gβ, and Gγ, further 
demonstrating that tethered agonism allows for the recruitment of G 
protein complexes [51]. Additional structures of cleaved ADGRG1/GPR56 
and ADGRL3/Latrophilin3 bound to Gα13, Gβ, and Gγ have also been 
reported [52]. However, cryo-EM studies have also identified cleavage-
deficient variants of ADGRF1/GPR110 that still have the tethered agonist 
sequence positioned within the 7TM pocket [16], opening more questions 
as to how the GAIN domain may organize itself in autoproteolytically 
processed and non-processed receptors. Thus, two models exist for 
tethered agonist-dependent activation: one wherein GAIN-autoproteolysis 
allows for dissociation between the NTF and CTF at the GPS site, and one 
wherein the tethered agonist can regulate receptor signaling with or 
without GAIN-autoproteolysis [53]. Both models rely on mechanical forces 
from binding interactions at the NTF [54], positing aGPCRs as both 
mechanosensitive receptors and adhesive-dependent receptors. 

The 7TM domain also contains other regions that may have functional 
importance, such as the accompanying extracellular (ECLs) and 
intracellular loops (ICLs), and the intracellular C-terminal tail. The 
function of the ECLs and ICLs, known to be critical for extracellular ligand 
binding [55] and G protein and β-arrestin signaling and regulation [56,57] 
in other GPCRs, remains unclear; the ECLs are particularly poorly 
characterized in aGPCRs, and do not appear to bind small molecule ligands 
in the same way as other GPCRs. Cryo-EM structures have also shown that 
the ICLs of ADGRL3 are critical for G protein coupling [58], suggesting that 
the ICL regions may have significant structural and functional similarities 
between aGPCRs and other GPCR superfamilies. However, many aGPCRs 
have varying lengths of both ICLs and ECLs due to alternative splicing [59], 
suggesting that signaling may differ due to ICL and ECL changes in 
different physiological contexts. 

The intracellular C-terminal tails of different aGPCR subfamilies vary 
in length and functionality. Proline-rich regions located in the C-terminal 
tail of some aGPCRs are potentially capable of forming polyproline helices, 
which may affect intracellular binding and signaling cascades [60], though 
these sequences have not been extensively studied in aGPCRs. Many 
aGPCRs also contain a PDZ binding motif (PBM) that allows for binding 
interactions to PDZ domain-containing proteins, which play significant 
roles in the recruitment and anchoring of cell surface receptors in many 
different tissues [61]. Phosphorylation along the CTF is also common [62], 
and likely promotes binding of β-arrestins, much like in other canonical 
GPCRs [63]. 
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Summary 

Altogether, the complicated structures of aGPCRs reflect the complex 
roles they play in a variety of cellular and physiological contexts. Current 
research indicates that many aGPCRs can signal in a Stachel-dependent 
manner, both with and without the dissociation of the NTF at the GPS, as 
well as in a tethered agonist-independent manner, as a protein scaffold or 
recruiter of other protein complexes. Furthermore, G protein-dependent 
and G protein-independent signaling pathways have been identified in 
Stachel-dependent and -independent paradigms for numerous aGPCRs, as 
well as with and without NTF dissociation. The additional roles of both NTF 
and CTF motifs that can recruit certain structural scaffolds only add 
further complexity to these models (see Figure 2B for functional models of 
aGPCRs). Advances in cryo-EM and structural modeling algorithms have 
allowed for novel insights into the structure of aGPCRs, although questions 
around their activation mechanisms remain unanswered. Better models 
of aGPCR structure and function will be critical for designing targeted 
therapeutics for a variety of conditions, particularly neurological and 
psychiatric conditions that may have little to no other viable treatment 
options. A summary of the neurological and psychiatric disorders 
associated with aGPCRs is provided in Table 3 and expanded upon in the 
next sections. 

Table 3. aGPCR genomic locations and associated neurological or psychiatric disorders. Genomic locations 
were acquired from the National Center for Biotechnology Information Genome primary assembly 
GRCh38.p14 [64]. Associated neurological or psychiatric disorders in humans that have been identified by 
genome-wide associated studies or as clinical case reports. 

aGPCR Genomic Location (GRCh38.p14) Associated Neurological or Psychiatric Disorders 
ADGRA1 NC_000010.11:133087924-133131675 (+) • Expression associated with better prognosis for glioma (long non-

coding RNA variant ADGRA1-AS1) [65]. 
• No associations with neurological or psychiatric disorders found 
for ADGRA1. 

ADGRA2 NC_000008.11:37796883-37844896 (+) • Mutations associated with polymicrogyria [66]. 
• Mutations associated with malformation of cerebellum, spinal 
cord, and cerebral cortex [67]. 
• Variants with reduced risk of brain arteriovenous malformation 
[68]. 
• Associated with development of brain metastases in patients with 
lung adenocarcinoma [69]. 
• Mutations associated with rectal neuroendocrine carcinomas [70]. 

ADGRA3 NC_000004.12:22387376-22516066 (-) • No associations with neurological or psychiatric disorders found. 
ADGRB1 NC_000008.11:142449649-142545007 (+) • Mutations associated with autism spectrum disorder (ASD) [71]. 

• Downregulated in medulloblastoma, glioblastoma, astrocytoma, 
and lung adenocarcinoma brain metastases [72–75]. 

ADGRB2 NC_000001.11:31727117-31764340 (-) • Expression associated with depression [76]. 
• Expression associated with neuroticism [77]. 
• Expression associated with decreased educational attainment [78]. 
• Mutation associated with progressive spastic paraparesis [79]. 
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ADGRB3 NC_000006.12:68635282-69389506 (+) • Expression associated with anxious temperament [80]. 
• Expression associated with taste perception degeneration in 
Alzheimer’s disease [81]. 
• Expression associated with Chiari Malformation Type I [82]. 
• Expression associated with disorganized symptoms of 
schizophrenia [83,84]. 
• Expression associated with multiple sclerosis [85]. 
• Expression associated with predisposition to substance use 
disorders [86]. 
• Expression associated with cerebral and cerebellar atrophy [87]. 
• Expression associated with intellectual disability [87]. 
• Expression associated with major depressive disorder [83]. 
• Expression associated with ASD [88]. 
• Downregulated in glioma [89]. 

ADGRC1  NC_000022.11:46361174-46537620 (-) • Mutations associated with neural tube defects and brain 
malformations [90–99]. 
• Mutations associated with partial epilepsy of childhood [100]. 
• Mutations associated with ischemic stroke [100–102]. 
• Mutations associated with spina bifida [103]. 
• Mutations associated with glaucoma [104]. 
• Mutations associated with familial strabismus [105]. 
• Mutations associated with Phelan-McDermid syndrome [106]. 
• Mutations associated with Parkinson’s disease [107]. 
• Expression associated with glioma [108]. 
• Expression associated with cerebral ischemic injury [109]. 
• Expression associated with child behavioral issues [110]. 

ADGRC2 NC_000001.11:109249539-109275751 (+) • Mutations associated with neural tube defects [98]. 
• Mutations associated with idiopathic scoliosis [111]. 
• Mutations associated with Joubert syndrome [112,113]. 
• Mutations associated with epilepsy [114]. 
• Mutations associated with Alzheimer’s disease [115]. 

ADGRC3 NC_000003.12:48636463-48662886 (-) • Mutations associated with Tourette’s syndrome [116–119]. 
• Mutations associated with epilepsy [120,121]. 
• Mutations associated with Rubinstein-Taybi syndrome [122]. 
• Mutations associated with schizophrenia [122]. 
• Mutations associated with oral squamous cell carcinoma 
perineural invasion [123]. 
• Mutations associated with migraine [124]. 
• Mutations associated with stroke [124]. 
• Mutations associated with central hypotonia [125]. 
• Mutations associated with neuroendocrine cancers [126–128]. 

ADGRD1 NC_000012.12:130953907-131141469 (+) • Expression associated with glioma severity [129–131]. 
ADGRD2 NC_000009.12:124450451-124478580 (+) • No associations with neurological or psychiatric disorders found. 
ADGRE1 NC_000019.10:6887579-6940450 (+) • Mutations associated with increased risk of complex malaria-

associated seizures in children with falciparum malaria [132]. 
• Mutations associated with high-risk neuroblastoma [133]. 

ADGRE2 NC_000019.10:14724171-14778560 (-) • No associations with neurological or psychiatric disorders found. 
ADGRE3 NC_000019.10:14600117-14674844 (-) • No associations with neurological or psychiatric disorders found. 
ADGRE4 NC_000019.10:6950758-6997851 (-) • No associations with neurological or psychiatric disorders found. 
ADGRE5 NC_000019.10:14381444-14408723 (+) • Expression associated with invasion of glioma cells [134]. 
ADGRF1 NC_000006.12:46997708-47042332 (-) • Expression associated with glioma severity [135]. 

• Expression associated with long-term cannabis use [136]. 
• Expression associated with chronic shoulder and neck pain in 
patients with depression [137]. 

ADGRF2 NC_000006.12:47656472-47697794 (+) • No associations with neurological or psychiatric disorders found. 
ADGRF3 NC_000002.12:26308173-26346789 (-) • Expression associated with pancreatic, gastric, small bowel, and 

duodenal neuroendocrine tumors [138,139]. 
ADRGF4 NC_000006.12:47698580-47722014 (+) • Mutation associated with Alzheimer’s disease in a non APOE ε4 

carrier [140]. 
ADGRF5 NC_000006.12:46852522-46954939 (-) • No associations with neurological or psychiatric disorders found. 
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ADGRG1 NC_000016.10:57619738-57665567 (+) • Mutations associated with bilateral frontoparietal polymicrogyria 
[141–146]. 
• Downregulated with traumatic brain injury (TBI) [147]. 
• Upregulated with anti-depressant treatment [148]. 

ADGRG2 NC_000023.11:18989307-19122956 (-) • No associations with neurological or psychiatric disorders found. 
ADGRG3 NC_000016.10:57665629-57689378 (+) • No associations with neurological or psychiatric disorders found. 
ADGRG4 NC_000023.11:136300963-136416890 (+) • No associations with neurological or psychiatric disorders found. 
ADGRG5 NC_000016.10:57529073-57577189 (+) • No associations with neurological or psychiatric disorders found. 
ADGRG6 NC_000006.12:142302007-142446261 (+) • Mutations associated with lethal arthrogryposis multiplex 

congenita [149]. 
• Mutations associated with distal arthrogryposis with patch 
neuropathy [150]. 
• Mutations associated with lethal congenital contracture syndrome 
9 [151]. 
• Expression associated with lacunar stroke [152]. 
• Mutations associated with severe intellectual disability [153]. 

ADGRG7 NC_000003.12:100609601-100695479 (+) • No associations with neurological or psychiatric disorders found. 
ADGRL1 NC_000019.10:14147743-14206169 (-) • Mutations associated with epilepsy [154]. 

• Mutations associated with cognitive and language development 
delay [155]. 

ADGRL2 NC_000001.11:81306132-81993932 (+) • Mutation associated with extreme microcephaly, absent cortical 
sulcation, and rhombencephalosynapsis [156]. 

ADGRL3 NC_000004.12:61200326-62078335 (+) • Mutations associated with attention-deficit hyperactivity disorder 
[157–179]. 
• Expression associated with starvation [163]. 
• Expression associated with nicotine exposure [163]. 
• Expression associated with maternal stress [180]. 
• Expression associated with substances use disorder [181]. 
• Mutations associated with ASD [160,182]. 
• Mutations associated with chronic migraines [183]. 
• Mutations associated with ependymoma [184]. 
• Mutations associated with schizophrenia [185]. 
• Mutations associated with Huntington’s disease [185]. 

ADGRL4 NC_000001.11:78889764-79006730 (-) • Expression associated with glioma progression [186–189]. 
• Expression associated with stroke risk [190]. 
• Expression associated with sleep-wake cycle [191]. 
• Expression associated with cannabis use disorder [192]. 
• Expression associated with oligodendrogliomas [193]. 
• Mutations associated with schizophrenia [194]. 

ADGRV1 NC_000005.10:90558797-91164437 (+) • Mutations associated with development of Usher Syndrome IIC 
[195–209]. 
• Mutations associated with hearing loss [210–213]. 
• Mutations associated with seizure susceptibility [214–226]. 
• Expression associated with epileptogenesis in glioma patients 
[227]. 
• Expression associated with neuroblastoma [228]. 
• Expression associated with opioid dependence risk [229]. 
• Mutations associated with megalencephaly-capillary 
malformation polymicrogyria syndrome [230]. 

ADHESION G-PROTEIN COUPLED RECEPTORS IN NEUROLOGICAL 
AND PSYCHIATRIC DISORDERS 

ADGRAs 

ADGRA1 

Adgra1 is expressed primarily in the cortex, thalamus, hypothalamus, 
and hippocampus, with moderate expression in the amygdala, 
hypothalamus, inferior olive, and spinal cord [231] and has been localized 
to the postsynaptic fraction [232]. Loss of Adgra1 in male mice results in 
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increased anxiety-like behaviors [233], increased spine density [233], 
upregulation of PSD-95 [233], and hypothalamic misfunction resulting in 
abnormal energy expenditure and thermogenesis [234]. A recent preprint 
also suggests that ADGRA1 is important in proper development of 
hippocampal inhibitory connections, where loss of ADGRA1 in 
parvalbumin-positive (PV+) and somatostatin-positive inhibitory 
interneurons results in decreased amplitudes of evoked inhibitory 
synaptic currents and subsequent impairment of Pavlovian fear 
conditioning in mice [235]. Further, an analysis of the Cancer Glioma Atlas 
revealed that expression of the anti-sense long non-coding RNA variant of 
ADGRA1, ADGRA1-AS1, was associated with better prognosis for glioma 
patients [65]. Together, these data suggest that ADGRA1 could be involved 
in establishment of synaptic circuitry and a potential therapeutic target 
for anxiety, metabolic disorders, and glioma. 

ADGRA2 

Of the ADGRA subfamily, ADGRA2 is the most extensively studied. 
Adgra2 is a proangiogenic receptor expressed in endothelial cells and 
pericytes, whose activity is critical for the development of the blood-brain 
barrier (BBB) [236–239]. ADGRA2 modulates angiogenesis via β-catenin 
signaling through complex signaling interactions with Wnt7a/7b, the GPI-
anchored protein Reck, the Frizzled receptor, and Dishevelled [236–243]. 
In the absence of ADGRA2, Reck binds Wnt7a/7b, preventing activation of 
Frizzled receptors by Wnt [15]. ADGRA2 binds Reck extracellularly, 
bringing Reck-bound Wnt7a/7b into proximity of the intracellularly bound 
Frizzled receptor [238,241]. In zebrafish, Dishevelled is a required adaptor 
between Adgra2 and the Frizzled receptor, but human and mouse variants 
of ADGRA2 do not contain Dishevelled binding sites in their intracellular 
domains [236,241]. Activation of the Frizzled receptor by binding of 
WNT7a/7b triggers downstream pathways that regulate β-catenin 
[238,241,243,244]. Thus, disruption of Adgra2 activity leads to cerebral 
vascularization defects as well as impaired formation of dorsal root 
ganglia, leading to embryonic lethality [237–239,241,243,245–248]. 
Mutations in ADGRA2 have been identified in patients that associated with 
polymicrogyria [66] and malformation of the cerebellum, spinal cord and 
cerebral cortex [67]. Interestingly, these mutations led to bifrontal 
polymicrogyria similar to deleterious ADGRG1 mutations [67], but not 
vascular abnormalities as expected with ADGRA2’s role in the BBB. 
However, another study did identify 3 ADGRA2 variants in patients 
associated with reduced risk of developing brain arteriovenous 
malformation [68]. 

Aside from its role in development, ADGRA2 is also required for 
effective response to disruptions of the BBB in adults. Models of ischemia 
have associated loss of Adgra2 with additional devastating defects. Oxygen 
deprivation increases Adgra2 expression in pericytes, where it localizes in 
filopodia to modulate cell polarity and cell adhesion through interactions 
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with the ELMO/DOCK complex and intersectins [249,250]. ADGRA2 
promotes ELMO phosphorylation, leading to activation of CDC42 and RAC1 
GTPases that are imperative for polarization of cells towards injury sites 
[250]. In response to ischemic stroke, mice with conditional knockout of 
Adgra2 in endothelial cells exhibit increased breakdown of the BBB, 
microvascular hemorrhage, and lower overall survival [246]. Conversely, 
overexpression of Adgra2 leads to increased pro-inflammatory signaling 
and pyroptosis, which are also associated with decreased survival rates 
[251]. Even a truncated fragment of the ADGRA2 NTF can improve 
cognitive function in mice following bilateral common carotid artery 
occlusion by promoting cell migration and extracellular matrix adhesion 
[252]. Further, an analysis of nine neuroinvasive viruses identified 
ADGRA2 as a potential host protein containing viral protease cleavage sites 
[253]. This suggests that cleavage of ADGRA2 may assist viruses in 
bypassing the BBB. Together, these data suggest that careful regulation of 
Adgra2 is required for proper modulation of ischemic injury. 

ADGRA2 also plays a role in nervous system cancers. ADGRA2 binds ch-
TOG to promote microtubule assembly and regulate the cell cycle [254]. 
Intriguingly, upregulation or downregulation of Adgra2 decreases cell 
proliferation in glioblastoma cells [254]. Similarly, silencing of Adgra2 in 
vitro inhibits tumor growth and blood vessel formation [255], while 
conditional knockout of Adgra2 in vivo amplifies intratumoral 
hemorrhage and edema [246]. These studies again suggest that balanced 
levels of ADGRA2 expression are required for suppression of gliomas. 
Additionally, high ADGRA2 expression has been associated with poor 
prognoses in patients in lung adenocarcinoma due to its role in promoting 
brain metastases [69]. The activation of WNT7a/7b mediated β-catenin 
signaling promotes trans-endothelial migration in vascular pericytes, 
leading to the spread of cancer cells to the brain [69]. Finally, studies have 
also observed that patients with rectal neuroendocrine carcinomas are 
associated with mutations in ADGRA2 [70]. 

ADGRA3 

Work on the involvement of ADGRA3 in neuropsychiatric functions 
remains limited. Adgra3 is expressed in regions of the cortex, 
hypothalamus, and choroid plexus [256]. One study has illustrated that 
Adgra3 is specifically upregulated in the choroid plexus following TBI 
[256]. However, the mechanisms by which this upregulation occurs, and 
subsequent downstream effects remain unclear. Other studies have also 
suggested a role of ADGRA3 in development. Adgra3 is differentially 
expressed throughout the formation of the cochlea but is not required for 
its development or functional hearing [257]. Further, Adgra3 recruits 
Dishevelled to the cell membrane during gastrulation to regulate Wnt/PCP 
signaling [258]. This, in turn, drives convergence and extension 
movements critical for proper establishment of developmental axes. 
Overexpression of Adgra3 disrupts these movements and loss of Adgra3 
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results in enhanced defects of PCP mutants, including in neuronal 
migration [258]. Interestingly, the ADGRA3 LRR domain is sufficient for 
proper trafficking of ADGRA2 in a chimeric protein [240] but ADGRA3 does 
not signal with WNT7A/B specifically [244]. However, the similarities to 
ADGRA2 in modulation of Wnt signaling and cell polarity suggest that 
ADGRA3 could be a critical and distinct regulator of development. 

ADGRBs 

ADGRB1 

Numerous functions of ADGRB1 have been identified in the nervous 
system, including in synaptic development, angiogenesis, and 
neuroimmune function. ADGRB1 modulates dendritic and axonal 
arborization in a RhoA-dependent fashion. Loss of Adgrb1 leads to low 
RhoA activity and triggers dendritic outgrowth, while overexpression 
leads to high RhoA activity and dendritic retractions [34,259]. In dendritic 
spines, ADGRB1 interacts with postsynaptic proteins such as PSD-95 
[260,261] to regulate spine density, spine length, and spine diameter [262–
264]. This modulation occurs via an interaction between ADGRB1 and 
PAR3, which localizes the PAR3/TIAM1 complex to dendritic spines to 
activate RAC1 and induce cytoskeletal remodeling [263,264]. Further, 
ADGRB1 has been shown to bind RTN4Rs [34] and complement component 
1q [265] to mediate additional synaptic roles. Functionally, loss of Adgrb1 
decreases the frequency of miniature excitatory post-synaptic currents 
and impairs long-term potentiation and long-term depression in neurons 
of the hippocampus [260,264]. Reduced expression of PSD-95 in Adgrb1 
knockout mice, likely due to increased PSD-95 polyubiquitination, 
indicates a disruption of the organization of postsynaptic proteins in the 
absence of ADGRB1 [260]. Together, these alterations result in social 
deficits and increased susceptibility to seizure in mice [262]. Interestingly, 
in humans, de novo mutations in ADGRB1 have been associated with ASD 
[71]. Recently, ADGRB1 has also been shown to be necessary for fully 
functional hearing, being involved in the localization of AMPA receptors 
in the postsynaptic density of type I spiral ganglion cells [266]. 

ADGRB1 has been identified in multiple brain cancers. Studies have 
illustrated a downregulation of ADGRB1 in medulloblastoma [267,268], 
glioblastoma [72,73,269], astrocytoma [74], and lung adenocarcinoma 
brain metastases [75]. Decreased expression of ADGRB1 in brain cancers 
is thought to occur through extensive methylation of the ADGRB1 locus by 
methyl-CpG binding domain protein 2 (MDB2) and Enhancer of zeste 
homolog 2 (EZH2) [72,267,268,270]. ADGRB1 also stabilizes p53 levels by 
removing the E3 ubiquitin-protein ligase Mdm2 from the nucleus [267]. 
This dual function makes ADGRB1 an interesting potential target for 
treatment of these cancers. Excitingly, ADGRB1 overexpression in 
medulloblastoma and glioblastoma by blocking MDB2 and EZH2, or 
ADGRB1 injection inhibits tumor angiogenesis [72,269] and stabilizes p53 
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[267,268], leading to increased odds of survival in mice. Relevant to public 
health, increased methylation of ADGRB1 is also present in neonates with 
mothers exposed to electronic waste and heavy metals [271,272]. 

Further, ADGRB1 has been shown to be involved in macrophage and 
astrocyte function through binding of phosphatidylserine. Upon binding 
phosphatidylserine on apoptotic cells, ADGRB1 interacts with the 
ELMO/Dock180 complex to recruit Rac-GEF complexes and promote 
engulfment of apoptotic cells [273–275]. This interaction also mediates 
recognition of surface lipopolysaccharide and engulfment of gram-
negative bacteria [276]. Reduction of ADGRB1 also leads to impaired 
formation of the phagocytic cup, leading to reduced branch retraction and 
bacteria clearance efficiency [277]. However, there is some controversary 
whether ADGRB1 is endogenously expressed in macrophages, or if these 
effects are attributed to ADGRB1 expression in other phagocytes [278]. 

ADGRB2 

Adgrb2 is primarily expressed in the cerebral cortex, hippocampus, 
cerebellum, and brainstem nuclei and is specifically enriched at 
postsynaptic sites [279,280]. Loss of Adgrb2 results in decreased density of 
glutamatergic synapses and mature mushroom spines without affecting 
GABAergic synapses [279]. Disruptions in Adgrb2 have been associated 
with antidepressive behaviors, increased adult hippocampal neurogenesis, 
and hyperactivity [281,282]. In one clinical case, a mutation in the C-
terminal domain (R1465W) was associated with the development of 
progressive spastic paraparesis and other neurological symptoms [79]. 
This mutation resulted in increased constitutive signaling of NTF-cleaved 
ADGRB2, switching activity from Gαz coupled to Gαi coupled signaling and 
disrupted binding to endophilin A1 [79]. Interestingly, recent large-scale 
exome-wide sequencing analyses and genome-wide association studies 
have identified ADGRB2 expression to be significantly correlated with 
depressive symptoms [76], neuroticism [77], and decreased educational 
attainment [78]. 

ADGRB3 

ADGRB3 has been identified as a critical regulator of synapse 
development in the hippocampus, cerebral cortex, and cerebellum. In 
mice, loss of Adgrb3 leads to social deficits [283], smaller brain and body 
weights [283,284], abnormal energy expenditure [284], and increased 
susceptibility to seizure [283]. ADGRB3 interacts with synaptic protein 
complexes ELMO/DOCK180/RAC1 [285], neuronal pentraxins 1/R [286], and 
the four component complement 1, Q subcomponent—like (C1QL) proteins 
[287–289]. In hippocampal neurons, disruption of ADGRB3 leads to defects 
in dendritic length, branching and density of excitatory synapses [285,287]. 
Furthermore, in a mouse model of Alzheimer’s disease, microRNA-142-5p 
is overexpressed, leading to downregulation of hippocampal Adgrb3 
expression [290]. When microRNA-142-5p was inhibited, ADGRB3 was 
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upregulated and impairments in spatial learning and memory were 
reduced [290]. During cerebellar development, C1QL1 in climbing fibers 
interacts with postsynaptic ADGRB3 on Purkinje cells and loss of either 
impairs motor learning [291]. This interaction is required for synapse 
elimination and synaptogenesis to determine a “single winner” climbing 
fiber that exclusively innervates a Purkinje cell [291–293]. In the 
basolateral amygdala, C1QL3-containing neurons that project to the 
medial prefrontal cortex are required for the proper development of 
implicit association and fear memories [294]. In these neurons, ADGRB3 
additionally interacts with C1QL3 and PSD-95 to mediate formation of 
morphine withdrawal memories [295], making ADGRB3 an appealing 
target to facilitate recovery from substance use disorders. Further, the 
projections from the anterior olfactory nucleus also contain C1QL3, which 
binds postsynaptic ADGRB3 in the olfactory bulb [296]. Loss of C1QL3 or 
ADGRB3 activity leads to a decrease in the number of synapses from the 
anterior olfactory nucleus to the olfactory bulb and impairment of 
learning in social transmission of food preference, without affecting 
olfactory function [296]. Together, these studies suggest that ADGRB3 is a 
critical regulator of synaptic development in multiple brain regions and is 
specifically required for memory-related functions. 

ADGRB3 has also been linked to other roles in the nervous system. In 
the cochlea, ADGRB3 interacts with C1QL proteins and modulates levels of 
ELMO1/DOCK180/RAC1 [297]. Loss of Adgrb3 leads to high-frequency 
hearing impairment, thinner pillar cells, and degeneration of hair cells 
and spiral ganglion neurons in older mice [298]. C1QL1 also promotes 
differentiation of mature oligodendrocytes, possibly through an 
interaction with ADGRB3 [299]. After cerebral ischemia, ADGRB3 levels 
are downregulated [89] and could be involved in C1QL1/4-mediated 
angiogenesis [300]. Unsurprisingly, ADGRB3 has been implicated in 
various disorders. Human genetic studies have associated ADGRB3 
expression and mutations with anxious temperament [80], taste 
perception degeneration in Alzheimer’s disease [81], development of 
Chiari Malformation Type I [82], disorganized symptoms of schizophrenia 
[83,84], multiple sclerosis [85], predisposition to substance use disorders 
[86], cerebral and cerebellar atrophy [87], intellectual disability [87], 
major depressive disorder [83], and ASD [88]. ADGRB3 could also be a 
marker for large cell neuroendocrine carcinoma [301] and is 
downregulated in gliomas [89]. Of further clinical relevance, perinatal 
exposure to selective serotonin reuptake inhibitors alters expression of 
ADGRB3 in multiple brain regions, subsequently increasing passive stress 
coping and decreasing sucrose preference [83]. Together, these studies 
suggest that ADGRB3 could be a powerful therapeutic target for 
neurological and psychiatric disorders. 
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ADGRCs 

ADGRC1 

ADGRC1 is a planar cell polarity protein involved in coordination of 
cells during neurodevelopment. ADGRC1 variants have been identified in 
patients with neural tube-related defects and brain malformations [90–99], 
partial epilepsy of childhood [100], ischemic stroke [101,102,302], spina 
bifida [103], glaucoma [104], familial strabismus [105], Phelan-McDermid 
syndrome [106], and Parkinson’s disease [107]. Expression of ADGRC1 has 
also been associated with glioma [108], cerebral ischemic injury [109], and 
child behavioral issues [110]. Similarly, loss of functional Adgrc1 in mice 
leads to high embryonic mortality [303], neural tube defects [304–306], 
vestibular dysfunction [303,304,307], and aberrant migration of facial 
branchiomotor neurons [308–310]. Throughout embryonic development, 
Adgrc1 is regulated along the apico-basal axis [46], expressing in the 
ventricular zone of the neural tube [311]. In this apical region, ADGRC1 
determines mediolateral polarity by recruiting Dishevelled-2, which 
associates with PDZ-RhoGEF through DAAM1 [306]. This complex activates 
Rho kinases that promote midline convergence of neuroepithelial cells 
[306]. Failure of this pathway leads to abnormal neural plate morphology 
and neural tube closure defects [304,305]. Beyond neural tube closure, 
ADGRC1 interacts with Wnt/PCP proteins to mediate retinoic acid signaling 
in apical neural progenitor cells [312]. Deficient ADGRC1 dysregulates 
retinoic acid, triggering self-renewal of progenitors over neurogenesis and 
leading to cortical hypoplasia [312]. Additionally, ADGRC1 has been 
associated with dorsal sensory tract morphogenesis [46] and dendrite 
initiation in granule cells [313] in mice, as well as axon trajectory defects 
in C. elegans [314]. 

Adgrc1-deficient mice that survive past fetal development exhibit 
vestibular dysfunction. Behaviorally, they exhibit circling behaviors, 
nystagmus, gaze instability, and impaired vestibular-ocular reflexes 
[303,307]. This is, in part, due to failure of stereocilia bundles to polarize 
and align [303]. In the cochlea, ADGRC1 is regulated by Wnt proteins [315] 
and stabilizes an intracellular signaling complex of two planar polarity 
proteins, Frizzled 3/6 and Van Gogh-like 1/2 [316]. Disruption of any of 
these three proteins leads to type II spiral ganglion neuron tuning errors, 
incorrect innervation of cochlea fibers, and developmental defects in the 
semi-circular canal cristae [303,316]. These impairments lead to defects in 
the vestibular system, leading to altered behaviors. Further, Adgrc1-
deficient mice also exhibit defects in migration of facial branchiomotor 
neurons. Normally, ADGRC1 suppresses chemoattractant Wnt5a to 
properly guide facial branchiomotor neurons from rhombomere 4 to 
rhombomere 6 [308]. Loss of Adgrc1 leads to improper migration rostrally 
to rhombomere 3, due to attraction mediated by Wnt5a [308,310]. Thus, 
ADGRC1 mediates directionality of migration for facial branchiomotor 
neuron migration [308–310]. 
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ADGRC2 

ADGRC2 is also a planar cell polarity protein with distinct functions 
from ADGRC1. ADGRC2 variants have been associated with neural tube 
defects [98], idiopathic scoliosis [111], Joubert syndrome [112,113], 
epilepsy [114], and Alzheimer’s disease [115]. During zebrafish 
development, adgrc2 modulates forebrain wiring through an interaction 
with frizzled 3 and van Gogh-like 1/2 [317], initiates facial branchiomotor 
neuron migration with adgrc3 [310,318], and regulates axon growth cone 
guidance together with other planar cell polarity proteins [319]. Further, 
Adgrc2 in mice promotes neurite outgrowth [320], ciliogenesis [321,322], 
Schwann cell proliferation and migration [323], and polarization of 
reactive astrocytes [324]. The specific impairment of ciliogenesis is a 
hallmark of Joubert syndrome and also leads to hydrocephalus [322]. 

Interestingly, multiple functions for Adgrc2 have also been observed in 
the adult brain. Inhibition of Adgrc2 in adult mice leads to motor learning 
deficits due to disruption of layer V pyramidal neurons → dorsal striatum 
projections [325]. This loss impairs spine formation, leading to decreased 
excitatory synapse density and signaling and increased inhibitory synapse 
density and signaling [325]. This disruption in excitatory/inhibitory 
balance could explain the epileptogenesis observed in humans. Further, 
loss of Adgrc2 in dorsal CA1 pyramidal neurons leads to defective social 
memory, due to impairment of NMDAR-mediated synaptic transmission 
[326]. Conversely, in motor neurons, ADGRC2 negatively regulates axon 
regeneration and fasciculation, impairing neurite and growth cone 
outgrowth [327,328]. This discrepancy suggests that Adgrc2 may function 
bidirectionally in neurite growth depending on a cell-specific context. 
Beyond these functions, Adgrc2 expression has been found to be related to 
glioblastoma progression [329], herbicide exposure [321], and seizures 
[114,330]. 

ADGRC3 

ADGRC3 is an essential regulator of axon guidance. ADGRC3 has been 
associated with Tourette’s syndrome [116–119], epilepsy [120,121], 
Rubinstein-Taybi syndrome and schizophrenia [122], perineural invasion 
of oral squamous cell carcinoma [123], migraine and stroke [124], central 
hypotonia [125], and neuroendocrine cancers [126–128]. Loss of Adgrc3 
disrupts numerous axon tracts, including in the acoustic startle hindbrain 
circuit [331], internal capsule [332], subventricular zone → olfactory bulb 
projections [333], rubrospinal and corticospinal tracts [334–337], motor 
neurons [338], fine sensory fibers [339], globus pallidus [340], 
hippocampal architecture [341], thalamocortical circuits [342–344], 
GABAergic retinal circuits [345], and neocortical interneurons [346]. This 
modulation relies on an interaction with Frizzled3 [343,347–349] to 
promote Wnt-mediated outgrowth [349] and establish pioneer neuron 
scaffolds [343]. In the hindlimb, ADGRC3 and Frizzled3 have been 
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observed to function through modulation of chemoattractive EphA-
ephrinA reverse signaling [338]. This interaction mediates Jag1 expression 
in response to Wnt7 and Notch signaling to regulate neurogenesis in 
immature cortical neurons [350]. Despite ADGRC3 mediation of broad and 
diverse axonal path finding, the exact mechanisms by which it acts 
requires further investigation. 

Specific disease-related interactions of ADGRC3 have recently been 
identified in neuromodulatory circuits. ADGRC3 determines guidance of 
dopaminergic and monoaminergic neurons [351–353]. This function is 
also reliant on an interaction with Frizzled3, along with Wnt5a 
chemoattraction of serotonin neurons and Wnt7b chemoattraction of 
dopaminergic neurons [351]. In mice, loss of Adgrc3 resulted in Tic-related 
behaviors, recapitulating symptoms of Tourette’s syndrome [352,353]. This 
loss is specifically associated with dysregulation of D3 dopamine receptors 
[352], which subsequently results in impaired motor function, 
dopaminergic signaling, and reward learning [352,353]. Interestingly, 
Adgrc2 and Adgrc3 expression in basolateral amygdala projecting neurons 
from the infralimbic prefrontal cortex is required for restoration of 
glutamatergic synapses and antidepressant response to ketamine 
treatment in mice [354]. Further, oligomeric β-amyloid has been shown to 
bind ADGRC3, recruiting Van Gogh-like 2 to promote disassembly of 
synapses and subsequent synapse degeneration [355]. These studies 
suggest that ADGRC3 functions in the adult brain and may contribute to 
disease etiology beyond developmental defects. 

ADGRDs 

ADGRD1 and ADGRD2 

Studies on the role of ADGRD1 and ADGRD2 in the brain are limited. 
ADGRD2 is primarily expressed in seminal vesicles and is not detected in 
cortical regions, suggesting that it does not play a role in nervous system 
function (Table 1, Figure 1). However, ADGRD1 has been identified as a 
potential protumorigenic protein in gliomas. ADGRD1 expression is sparse 
in non-cancerous brain tissue but is upregulated in the progression of 
gliomas [129]. The presence of ADGRD1 promotes tumor initiation and 
growth in a hypoxia-dependent manner, with knockdown of Adgrd1 
eliminating tumor initiation in mice injected with human glioblastoma 
cells [130,131]. High expression of ADGRD1 is correlated with glioma 
severity, as well as poor prognoses and reduced survival [129,131,356]. 
Efforts to downregulate ADGRD1 expression have included targeting the 
NTF-cleavage-dependent activity [357], ADGRD1 binding partners 
extended synaptotagmin 1 [358] and PTK7 [359], as well as downstream 
microRNA miR-106a-5p [356]. The prevalence and necessity of ADGRD1 in 
glioma development, as well as multiple identified modulators, make 
ADGRD1 an appealing candidate for further studies in glioma treatment. 
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ADGREs 

ADGRE1-5 

The ADGRE subfamily is primarily involved in the immune system, 
with relatively low expression in the brain (Table 1, Figure 1). The 
extensive roles of ADGREs in regulating inflammation have been reviewed 
previously [4,360]. Relevant to neurological disorders, ADGRE1 single 
nucleotide polymorphisms (SNPs) have been identified in African children 
with falciparum malaria that increase risk of developing complex malaria-
associated seizures, which include repetitive and coma-inducing seizures 
[132]. Further, a genome-wide association study in Korean children 
associated many SNPs in ADGRE1 with high-risk, MYCN-amplified 
neuroblastoma [133]. ADGRE5 expression levels have also been associated 
with invasion of glioma cells [134,361]. Together, these results suggest 
possible indirect roles for ADGRE1 and other ADGREs in neurological and 
psychiatric disorders in the regulation of the neuroimmune function. 

ADGRFs 

ADGRF1 

ADGRF1 regulates nervous system development as a receptor for the 
ligand synaptamide. Expression of ADGRF1 is high in fetal brain tissue but 
is minimal after birth [362] (Figure 1). Synaptamide promotes 
neurogenesis and synaptogenesis [362] in an ADGRF1-dependent manner 
through binding to the GAIN domain [363]. This binding upregulates cAMP 
production and phosphorylation of PKA and CREB to express neurogenic 
and synaptogenic genes [362,364]. Consequently, the activation of ADGRF1 
by exogenous treatment of synaptamide alleviates axon degeneration in 
models of mild TBI and optic nerve crush [365–367]. Further, the ADGRF1-
synaptamide interaction also mediates the neuroimmune response. 
Neuroinflammation triggered by lipopolysaccharide injection is reduced 
by treatment with synaptamide, which suppresses proinflammatory genes 
by downregulating NF-κB [364,366,368,369]. 

Aside from these roles, ADGRF1 is present in brain tissue of patients 
with glioma. Similar to ADGRD1, ADGRF1 is absent in non-cancerous brain 
tissue and high ADGRF1 expression is positively correlated with glioma 
severity, reduced survival rates, and enhanced cell invasion [135]. This 
suggests that the capability of ADGRF1 to promote neurogenesis may be 
hijacked to promote the infiltration of glioma cells that occurs in more 
severe disease cases. Interestingly, epigenome-wide and genome-wide 
association studies have also associated ADGRF1 expression with long-
term cannabis use [136], as well as chronic shoulder and neck pain in 
patients with depression [137]. Together, these studies suggest that 
ADGRF1 could be a prospective therapeutic target for neurodevelopment 
disorders, axonal degeneration and repair, and glioma. 
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ADGRF2-5 

Sparse literature exists for the other members of the ADGRF subfamily, 
especially regarding functions in the nervous system. Interestingly, 
ADGRF3 is moderately expressed in human cortical areas, suggesting a 
potential avenue for future studies (Figure 1). Two studies have found 
differential expression of ADGRF3 in pancreatic, gastric, small bowel, and 
duodenal neuroendocrine tumors [138,139], but a definitive role for 
ADGRF3 has not been discovered. Similarly, the function of ADGRF4 
remains unclear, but one study identified the rs1109581 SNP in ADGRF4 to 
be associated with Alzheimer’s disease in a non-APOE ε4 carrier [140]. 
Some work has been performed in ADGRF5, but it appears that its role in 
the nervous system is limited. 

ADGRGs 

ADGRG1 

ADGRG1 has been extensively studied in the context of development 
and myelination of the nervous system. Knockout of Adgrg1 in mice 
creates neuronal ectopias, resulting in cobblestone lissencephaly-like 
cortical malformation [370]. Numerous ADGRG1 mutations in humans 
have been associated with a specific type of cobblestone lissencephaly, 
called bilateral frontoparietal polymicrogyria [141–146]. This abnormal 
development indicates a critical role in ADGRG1 activity during cortical 
lamination. ADGRG1 follows an anterior-posterior gradient of expression 
in preplate neurons and is normally expressed by the basal endfeet of 
radial glial cells [370–372]. Loss of Adgrg1 disrupts the pial basement 
membrane, leading to neuronal overmigration due to a disruption in 
localization of radial glial cell endfeet and layer I Cajal-Retzius cells, which 
are critical in guiding migration [370]. The regulation of cortical 
development occurs by inhibiting neuronal migration through a binding 
interaction between ADGRG1 and collagen III [371,373] and localization of 
ADGRG1 in radial glial cell endfeet is mediated by the activity of MEMO1 
[372]. 

Aberrant ADGRG1 activity also leads to hypomyelination, with a 
reduction in the number of mature oligodendrocytes due to decreased 
proliferation of OPCs [374–377]. Disruptions also induce myelination 
abnormalities in the peripheral nervous system, but do not affect Schwann 
cell proliferation or differentiation [375]. Interestingly, overexpression of 
Adgrg1 increases OPC proliferation and impairs differentiation into 
mature oligodendrocytes [374]. This suggests that the reduction in OPC 
proliferation and oligodendrocyte number is due to premature cell cycle 
exit in OPCs. Indeed, ADGRG1 interacts with microglial transglutaminase-
2 to regulate OPC proliferation, which also requires laminin-111 [377]. 
Knockout of microglial transglutaminase-2 similarly results in 
hypomyelination resulting from a downregulation of OPC cell cycle 
progression regulator, CDK2 [377]. These defects in myelination with 
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Adgrg1 loss can subsequently impair remyelination after injury [377] and 
induce neuropathy in aging mice [375]. 

Additional roles for ADGRG1 in the nervous system are still being 
discovered. Recent evidence suggests that ADGRG1 is involved in synaptic 
pruning [378], is downregulated in TBI [147], is upregulated with anti-
depressant treatment [148], and modulates PV+ interneurons [379]. The 
ADGRG1 S4 isoform has been found to bind phosphatidylserine on the 
presynaptic terminal of retinal ganglion cells and does not play a role in 
OPC proliferation [378]. Loss of Adgrg1 in microglia leads to impaired 
ocular dominance columns, increased NMDA receptor-mediated currents, 
and decreased synaptic pruning by microglia [378,380]. Reduced ADGRG1 
activity also upregulates inflammatory cytokines and chemokines in TBI, 
exacerbating symptoms including motor deficits, short-term memory, 
spatial memory, lesion volumes, brain water content, BBB damage, and 
neuronal apoptosis [147]. A clinical study of 424 patients taking the anti-
depressant duloxetine revealed that ADGRG1 was the most upregulated 
mRNA and was selectively upregulated in patients that responded to the 
treatment [148]. Further, maternal immune activation reduced levels of 
glial ADGRG1, and decreased density of PV+ interneurons are observed 
[379]. This loss of PV+ interneurons has been associated with ASD with 
mice exhibiting ASD-like behaviors such as anxiety, having no preference 
for socialization, and increased repetitive behaviors [379]. Conditional 
knockout of Adgrg1 in microglia phenocopied PV+ interneuron loss and 
ASD-like behaviors and upregulation of Adgrg1 in microglia rescues 
maternal immune activation-induced deficits [379]. Together, these 
studies implicate ADGRG1 as a potential therapeutic target for treatment 
of cortical maldevelopment, myelination disorders, TBI, depression, and 
ASD. 

ADGRG6 

ADGRG6 plays a role in myelination of the peripheral nervous system. 
The expression of ADGRG6 initially drives 1:1 sorting of axons by 
immature Schwann cells via an interaction with Laminin-211 that inhibits 
cAMP signaling [381–383]. Following maturation of the basal lamina, 
Laminin-211 is polymerized to increase Gs signaling and cAMP expression 
by promoting activation of the tethered Stachel agonist [383,384]. This 
increase in cAMP drives expression of transcription factors oct6 and 
krox20, which triggers terminal differential of Schwann cells, expression 
of myelin-related genes, and initiates myelination [381,385]. Loss of 
functional ADGRG6 in development leads to delayed sorting of axons, 
disruption of Remak bundles, and a lack of myelination, leading to nerve 
and limb defects that are ultimately lethal in mice [382,385,386]. Similarly, 
human mutations in ADGRG6 have been associated with lethal 
arthrogryposis multiplex congenita [149], distal arthrogryposis with 
patchy neuropathy [150], and lethal congenital contracture syndrome 9 
[151]. Myelination defects can be rescued by exogenous expression of 
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cAMP [382,387]. This makes ADGRG6 an interesting therapeutic target as 
multiple modulators of ADGRG6-mediated cAMP expression have been 
identified. Aside from Laminin-211, cAMP augmentation by ADGRG6 is 
also triggered by collagen IV [388] and the prion protein [389]. Meanwhile, 
collagen VI has been shown to decrease cAMP through Gi-coupled 
signaling [390]. Through these pathways, ADGRG6 acts as a key regulator 
of Schwann cell differentiation. 

Despite this extensive role in the initiation of myelination, ADGRG6 has 
only a limited involvement in the maintenance of myelin. Loss of Adgrg6 
in 4-week and 4-month-old mice does not cause defects in Schwann cells 
or myelination [381]. However, ADGRG6 is essential for repair following 
nerve injury. ADGRG6 is hypomethylated after injury, increasing 
expression in activated Schwann cells [391]. This upregulation is critical 
for remyelination and recruitment of macrophages, both of which are 
inhibited in Adgrg6 knockout mice [381]. Further, reinnervation and 
clustering of acetylcholine receptors in the neuromuscular junction by 
nonmyelinating terminal Schwann cells also requires ADGRG6 [392]. This 
repair function is of clinical interest, as activation of ADGRG6 could 
counteract axonal degeneration in peripheral nerve injuries. Yet, efforts 
to improve myelin repair by activation of ADGRG6 via the prion protein 
have been unsuccessful [393,394]. This suggests that Laminin-211 or 
collagen IV may be better pharmacological targets to mediate ADGRG6-
related functions. 

There is also evidence for other roles of ADGRG6 in the nervous system. 
Loss of ADGRG6 leads to impaired vascular development, including defects 
in the permeability of the blood brain barrier, cortical vasculature, and 
retinal vasculature [395,396]. Consequently, this leads to embryonic 
hemorrhage in mice [397] and a meta-analysis of patients with lacunar 
stroke implicated ADGRG6 in pathogenesis as a key regulator of 
endothelial dysfunction and pericyte differentiation [152]. In endothelial 
cells, ADGRG6 expression closely follows the development of the blood 
brain barrier, with levels decreasing shortly after establishment [395]. 
Knockdown of Adgrg6 inhibits endothelial cell migration and proliferation 
due to G1/S cell cycle arrest [396]. In this process, Wnt/β-catenin signaling 
modulates Adgrg6 expression in endothelial cells, which then regulates 
VEGFR2, STAT5, and GATA2 to promote angiogenesis [396]. Aside from 
myelination and angiogenesis, ADGRG6 could also play a role in the 
development of the cerebellum [398] and clustering of axonal sodium 
channels in the Nodes of Ranvier [399]. Interestingly, a homozygous 
missense variation in ADGRG6 has been identified in two patients with 
severe intellectual disability [153], supporting a larger role for ADGRG6 in 
the central nervous system. 

ADGRG2, 3, 4, 5, and 7 

Besides ADGRG1 and ADGRG6, there is limited evidence for roles in the 
nervous system with other members ADGRG subfamily. Work on ADGRG2 



 
Journal of Psychiatry and Brain Science 27 of 71 

J Psychiatry Brain Sci. 2025;10(6):e250017. https://doi.org/10.20900/jpbs.20250017 

has occurred primarily in the context of male infertility while ADGRG3, 
ADGRG4, and ADGRG5 are involved in the immune system. One study on 
ADGRG3 has shown that its expression increases with experimental 
autoimmune encephalomyelitis and that Adgrg3 knockout mice have 
exacerbated symptoms, but follow-up studies have yet to be performed 
[400]. Given that ADGRG2, 3, 4, 5, and 7 are minimally expressed (Figure 
1), they may not be directly involved in nervous system function. 

ADGRLs 

ADGRL1 

The functions of ADGRL1-3 in synapse formation and other non-
neuronal functions have been extensively reviewed recently [401,402]. 
Briefly, ADGRL1 was originally discovered as a receptor for black widow 
venom, or alpha-latrotoxin. Binding of alpha-latrotoxin to ADGRL1 leads 
to a calcium-independent response [403,404], while binding to neurexin 
1α mediates the calcium-dependent response [405,406]. Together, binding 
to these receptors leads to the formation of Ca2+ ionophores [407], 
secretion of vasopressin and oxytocin [407], release of intracellular Ca2+ 
[407], and excessive neurotransmitter release [403,408,409]. The calcium-
independent response through ADGRL1 occurs through modulation of 
synaptic vesicle fusion machinery, including synaptobrevin, SNAP-25, and 
Munc13-1 [409]. Typically, autoproteolytic cleavage of ADGRL1 leads to the 
NTF and CTF acting as independent proteins [410,411]. Binding of alpha-
latrotoxin leads to phosphorylation of the CTF, which promotes 
convergence of the two fragments [410] and induces G protein mediated 
signaling [404] to regulate K and L-type Ca channels by phospholipase C 
[404,412]. However, G-protein signaling is not necessarily required for 
ADGRL1 response to alpha-latrotoxin, suggesting other signaling pathways 
could be coactive [413]. Dissociation of the two fragments has been shown 
to reduce alpha-latrotoxin induced neurotransmitter release in the 
neuromuscular junction [411]. 

In normal physiology, ADGRL1 is critical in neurodevelopment. 
Knockout of Adgrl1 leads to embryonic lethality in multiple animal models 
[414,415], but viability is dependent on genetic background [414]. One 
study found that loss of Adgrl1 in mice leads to neurological deficits, 
including social and sexual interaction defects and hyperactivity [414]. 
Similarly, ADGRL1 modulates Notch signaling in C. elegans through an 
interaction with Notch ligand LAG-2, leading to morphological and 
neuronal defects in ADGRL1-deficient animals [416,417]. During axonal 
migration, ADGRL1 promotes cell adhesion by binding with neurexin 1β 
[418]. ADGRL1 also directly modulates actin cytoskeleton remodeling 
through the cofilin pathway, which destabilizes F-actin [419]. 
Overexpression of Adgrl1 leads to a reduction in cell area, F-actin 
expression, and F-actin projections, which could lead to the observed 
neuronal migration defects [419,420]. 
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ADGRL1 is also required for normal synaptic function. Postsynaptic 
ADGRL1 interacts with presynaptic teneurins and fibronectin-leucine-rich 
transmembrane proteins (FLRTs) in a trans-synaptic complex to regulate 
synapse assembly [421–423]. This binding interaction is likely mediated by 
the lectin-like domain in ADGRL1 and the presence of the β-propeller in 
teneurin-2 [422,424]. The importance of this interaction has been 
illustrated in the hippocampus, where Adgrl1 is highly expressed 
throughout its development [425,426]. Deletion of presynaptic teneurins 
in the entorhinal cortex led to a loss of synapses onto CA1 of the 
hippocampus, subiculum, and dentate gyrus [423]. Loss of postsynaptic 
ADGRL1 phenocopied this effect and rescue in knockouts required the 
teneurin-binding sites of ADGRL1 [423]. Aside from teneurins, ADGRL1 
also binds to neurexin-1β [418] and SHANK [426–428], each of which has 
unique neurophysiological functions that ADGRL1 may mediate. 
Interestingly, there is contradictory evidence as to whether ADGRL1 
regulates excitatory or inhibitory synapse formation. Teneurins form 
nanoclusters in excitatory synapses [423] and loss of Adgrl1 has been 
found to impair formation of excitatory synapses [414]. However, a 
different study observed no deficits in excitatory synapse function [429]. 
Instead, ADGRL1 was required for proper formation and signaling of 
somatic inhibitory synapses [429]. This could be due to a difference in the 
genetic background of mice used, but more studies are necessary to 
resolve this discrepancy. Due to the variety of binding partners of ADGRL1 
and the numerous alternative splice forms for each protein [430], it is 
possible that ADGRL1 could be involved in both excitatory and inhibitory 
synapse formation depending on specific contexts. Interestingly, ADGRL1 
variants have recently been associated with epilepsy [154], as well as 
cognitive and language development delay [155], suggesting a critical 
function in mediating the excitatory/inhibitory balance. 

ADGRL1 additionally mediates apoptosis and neuronal sensitization. 
Overexpression of Adgrl1 triggers neuronal death and is modulated by 
TAFA2 and Contactin-6 [431,432]. TAFA2 binds ADGRL1 through the lectin-
like domain and suppresses apoptosis [431]. Similarly, Contactin-6 can 
reduce apoptosis induced by overexpression of Adgrl1 [432]. In ischemic 
conditions, neuronal death in CA1 is significantly higher than in CA3, 
correlating with upregulation of ADGRL1 in CA1 and downregulation of 
ADGRL1 in CA3 [433]. Interestingly, ADGRL1 is downregulated in 
cerebrospinal fluid after TBI [434], suggesting a suppression of apoptosis. 
Conversely, ADGRL1 has also been found to be upregulated in reactive 
astrocytes following mechanical brain injury [435]. Further, studies in 
Drosophila have shown that ADGRL1 mediates signal transduction in 
mechanosensitive and nociceptive neurons [436–438]. ADGRL1 directly 
modulates electrical activity of mechanoreceptors [437] to modulate 
relative mechanosensitivity [438] and is required for proper locomotion 
[437]. Thus, ADGRL1 activity can act as a sliding threshold to alter 
neuronal sensitization under differential stimulation. 
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ADGRL2 

ADGRL2 is a crucial guidance cue for establishing neuronal circuitry. 
Complete knockout of Adgrl2 in mice is embryonic lethal [156], but this is 
likely due to its role in non-neuronal functions [430]. Postsynaptic Adgrl2 
is expressed in specific excitatory synapses of the hippocampus, including 
in the stratum lacunosum moleculare area of CA1 [439,440], the entorhinal 
cortex [441,442], presubiculum [441], and parasubiculum [441]. In distal 
CA1 neurons, ADGRL2 acts as a repulsive receptor for the ligand Teneurin-
3, directing axons to the proximal subiculum [443]. Similarly, in proximal 
CA1 neurons, Teneurin-3 acts as a repulsive receptor for ADGRL2, 
directing axons to the distal subiculum [443]. Thus, neurons expressing 
Adgrl2 or Teneurin-3 form connections with neurons expressing the same 
receptor, which is mediated by contact repulsion [442,444]. Further, 
ADGRL2 GPCR activity and cAMP are required for the establishment of 
these synapses [445]. Postsynaptic deletion of Adgrl2 leads to impaired 
presubiculum → medial entorhinal cortex [441,446] and entorhinal cortex 
→ stratum lacunosum moleculare [439,440] projections. Synapses in the 
stratum oriens and stratum radiatum, as well as Schaffer collateral inputs, 
are unaffected [440,445]. Behaviorally, this results in defective 
performance in spatiotemporal memory tasks [439,446]. Interestingly, 
ADGRL2 is modulated in CA1 by oxidative stress [447] and Cajal-Retzius 
cells [448] and is downregulated in neurodegeneration [430]. 

ADGRL2 also mediates neuronal connections outside of the 
hippocampus by similar mechanisms. ADGRL2 is expressed in Purkinje 
cells of the cerebellum, where it is involved in establishing parallel fiber 
connections [449]. Intriguingly, loss of ADGRL2 or ADGRL3 alone is not 
sufficient to observe cerebellar defects, but a double knockout leads to 
impaired parallel fiber synapses [449]. During human neurodevelopment, 
ADGRL2 is also expressed in the cortical plate, basal ganglia, pons, and 
cerebellar cortex [156]. In one clinical case, a heterozygous ADGRL2 
missense variant was associated with extreme microcephaly, absent 
cortical sulcation, and rhombencephalosynapsis [156], suggesting that 
ADGRL2 may be involved in development of brain regions outside of the 
hippocampus and cerebellum. Indeed, deficits in cortical projections have 
been observed with loss of Adgrl2 [444,445]. Two recent preprints have 
also illustrated that Teneurin-3 and Adgrl2 are expressed in opposing 
concentration gradients that are critical for forming somatosensory maps 
[450], visual, auditory, basal ganglia, and cerebellar circuits [451], and 
hippocampus → cerebellum projections [451]. Together, these studies 
demonstrate that ADGRL2 is a key regulator of neuron guidance and that 
defective ADGRL2 can lead to lethal neurodevelopmental disorders. 

ADGRL3 

Numerous behavioral phenotypes have been associated with aberrant 
ADGRL3 activity, suggesting that it is a crucial component of the nervous 
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system. Loss of Adgrl3 in mice and adgrl3.1 in zebrafish leads to 
hyperactivity [452–461], social deficits [453,454], impaired spatial learning 
and memory [458,459,462], and altered reward-related behaviors 
[454,455,457,459,460,463]. These behavioral changes share commonalities 
with attention-deficient hyperactivity disorder (ADHD). Indeed, several 
studies have found that mutations in human ADGRL3 are correlated with 
increased risk of developing ADHD [157–179]. These SNPs do not 
necessarily cause loss of function, but can instead alter transcription of 
ADGRL3 [163,464]. Further, human ADGRL3 expression has been 
associated with starvation [163], nicotine exposure [163], and maternal 
stress [180]. Interestingly, some work has found ADGRL3 as a determinant 
of response to ADHD medication methylphenidate [465–467], but this 
association remains unclear [468]. However, in zebrafish and mice models, 
various ADHD medications have been shown to attenuate adgrl3.1 and 
Adgrl3 knockout-induced hyperactivity [452,469]. Functionally, patients 
with ADGRL3 SNPs have altered electroencephalogram activity when 
performing a visual Go-NoGo task and made more omission errors, 
suggesting that executive functions are altered [470]. Beyond ADHD, 
ADGRL3 has also been associated with substance use disorder [181], ASD 
[160,182], chronic migraines [183], ependymoma [184], schizophrenia 
[185], and Huntington’s disease [185]. 

Similar to ADGRL1 and ADGRL2, ADGRL3 is involved in glutamatergic 
synapse development. Postsynaptic ADGRL3 binds to presynaptic 
Teneurin-2 splice variant Lasso and presynaptic FLRT3 to form a trimeric 
trans-synaptic protein complex [440,471–473]. The lectin domain of 
ADGRL3 is required for binding to Teneurin-2 [473] and the olfactomedin 
domain mediates binding to FLRT3 [474]. Dysfunction of this protein 
complex or any of its members leads to disruption of excitatory synapses 
in cultured neurons [471–473,475]. One recent study also found that SARS-
CoV-2 viral particles accumulate at the ADGRL3-FLRT3 interface, blocking 
normal ADGRL3 activity and leading to dysregulated neurons [476]. 
Synapse modulation by ADGRL3 is dependent on G-protein signaling, 
specifically through Gαs coupling [445,471]. In the hippocampus, deletion 
Adgrl3 in mice selectively decreases Schaffer collateral projections to the 
stratum oriens and stratum radiatum, while deletion of Adgrl2 selectively 
decreases entorhinal cortex projections to the stratum lacunosum 
moleculare [440]. Coincident loss of Adgrl3 with Adgrl2 in the cerebellum 
also leads to decreased parallel fiber synapses on Purkinje cells [449]. In 
the retina, ADGRL3 regulates horizontal cell synapses [477] and is involved 
in trans-axonal signaling with Glypican-3 and Teneurin-3 to prune 
mistargeted retinal projections [478]. Further, loss of Adgrl3 affects 
cortical synapses, with decreased synapse density in projections from 
layer 2/3 → layer 5 [479]. Intriguingly, one study has also found that Adgrl3 
and Flrt3 are downregulated in a hyperactive ADHD mouse model [480], 
offering a partial explanation for ADHD etiology. 



 
Journal of Psychiatry and Brain Science 31 of 71 

J Psychiatry Brain Sci. 2025;10(6):e250017. https://doi.org/10.20900/jpbs.20250017 

ADGRL3 additionally mediates dopaminergic function throughout the 
brain. Loss of Adgrl3 in mice leads to increased levels of dopamine and 
serotonin in the striatum [457,459,460], due to altered expression of their 
related transporters [454,456,457,460]. More dramatic effects are observed 
with knockdown of adgrl3.1 in zebrafish, which results in loss and 
mistargeting of dopaminergic neurons in the ventral diencephalon [461] 
and hyposensitivity to dopamine modulators [481]. Behaviorally, Adgrl3-
deficient mice had increased reward motivation [463], but impulsive 
choice is not altered [482]. Functional assays measuring striatal activity in 
Adgrl3 knockout mice found dysregulation of dopamine signaling and 
hyposensitivity to amphetamine treatment [460]. A recent preprint also 
illustrated greater levels of evoked dopamine release, comparable release 
capacity to wild-type mice, and defective release during a fixed interval 
task [483]. Interestingly, in this case, amphetamine treatment rescued 
dopamine signaling [483]. Together, these studies provide a mechanism 
for dopamine dysregulation, which could contribute to ADHD 
development [484]. 

ADGRL4 

ADGRL4 has been studied as a proangiogenic factor in gliomas. 
Interestingly, its extracellular domain differs significantly from ADGRL1-
3 and is more similar to the ADGRE subfamily, suggesting that ADGRL4 
may be misclassified [485]. In patients with glioma, ADGRL4 upregulation 
is correlated with tumor progression and decreased survival rates [186–
189]. ADGRL4 is selectively expressed by endothelial cells, supporting its 
involvement in angiogenesis [486,487]. The overexpression of ADGRL4 in 
glioma is thought to promote tumor angiogenesis and progression by 
regulating regulates VEGFR2 [488], Notch-1 signaling [489,490] and the 
JAK/STAT3/HIF-1α axis [188]. In turn, Adgrl4 expression has been found to 
be regulated by miR-139-5p [491], VEGF-A [187], and TGFβ2 [187]. 
Excitingly, efforts to target gliomas by silencing Adgrl4 have been 
successful in murine and cell models. Downregulation of ADGRL4 by 
antibodies or small interfering RNAs increases survival rates [488–490], 
inhibits tumor growth [488–492], normalizes vasculature [489,490], 
prevents disruption of the brain-blood barrier [489], inhibits cell 
proliferation [491], and increases apoptosis in tumors [490,491,493]. This 
effect seems to be specific to targeting ADGRL4 as it is not recapitulated by 
downregulation of VEGFR-2 [488]. Knockdown of ADGRL4 has also been 
tested in neuroblastoma [494] and retinoblastoma [495], yielding similar 
positive results. These studies implicate ADGRL4 as an appealing 
pharmacological target, but more studies need to be conducted into the 
function and mechanisms of ADGRL4 in gliomas and normal brain 
physiology. 

ADGRL4 has also been preliminarily associated with other neuronal 
functions. Genomic studies have identified ADGRL4 associations with 
stroke risk [190], sleep-wake cycle [191], cannabis use disorder [192], 
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oligodendrogliomas [193], and schizophrenia [194]. Further, ADGRL4 may 
be involved in certain symptoms of multiple sclerosis. In mice with 
experimental autoimmune encephalomyelitis, ADGRL4 was upregulated 
throughout the brain, especially in the corpus callosum [496]. This 
subsequently led to inflammation, disruption of cerebral blood flow, and 
a leaky BBB [496]. These results suggests that there are various unexplored 
roles for ADGRL4 in the brain, warranting further studies. 

ADGRV1 

ADGRV1 

ADGRV1, the largest-known cell surface protein, has been linked to the 
development of Usher syndrome IIC and seizure susceptibility. Numerous 
mutations in ADGRV1 have been identified in patients with Usher 
syndrome IIC, which is characterized by moderate to severe hearing loss 
and vision loss from retinitis pigmentosa [195–209]. Interestingly, ADGRV1 
mutations have also been associated with hearing loss, but not Usher 
syndrome [210–213]. In the developing ear, ADGRV1 participates in Usher 
protein complexes to establish proper hearing. ADGRV1 is a critical 
component of ankle links between stereocilia and forms an ankle link 
protein complex consisting of Usherin 2A, Vezatin, Whirlin, and ADGRV1 
[497–500]. This complex has been shown to localize other proteins such as 
adenylyl cyclase 6 [498] and PDZD7 [501] to modulate hair cell 
development. Consequently, disruption of Adgrv1 in mice leads to ear 
dysfunction and deafness due to loss of outer hair cells and ankle links, 
improper development of the stereocilia, impaired mechanoelectrical 
transduction, and disruption in auditory cortex interneuron development 
[498,500,502–504]. Because of its large size, many ADGRV1 isoforms exist 
that can participate in differential functions. Distinct variants of ADGRV1 
are trafficked to the basal and apical sides of immature hair cells [497]. 
One such isoform has been found to associate with Clarin-1, CDH23, and 
PCDH15, and is involved in the formation of hair cell synapses [505]. 
Together, these studies provide insight into the loss of hearing observed in 
patients with and without Usher syndrome IIC and implicate ADGRV1 as a 
therapeutic target for treatment of Usher syndrome IIC-related deafness. 

The pathways disrupted by ADGRV1 mutations that lead to retinal 
pigmentosa in Usher syndrome IIC are less clear. Like in the ear, ADGRV1 
interacts with Usherin 2A and Whirlin B in the retina [499,506]. Mouse 
models with mutant Adgrv1 have impaired vision and loss of ADGRV1 is 
observed in the periciliary membrane region and connecting cilium 
[504,506,507]. This absence of ADGRV1 leads to altered localization and 
expression Usherin 2A and Whirlin B [504,506]. Subsequently, structural 
defects in the connecting cilium are observed [504], as well as defective 
ciliary trafficking of rhodopsin [506]. However, it appears that the 
morphology of inner and outer photoreceptor segments may be 
unaffected [508]. Aside from this complex, additional functions of ADGRV1 
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in the retina have been detected. ADGRV1 can interact with the CCT3 
subunit of the TriC/CCT chaperonin complex, which interacts with 
chaperonin-like BBS proteins [507]. This BBSome protein complex is 
crucial for ciliary development and protein trafficking but does not 
explain defective rhodopsin trafficking [509]. These data suggest that 
ADGRV1 is involved in multiple distinct pathways that are involved in 
proper visual function. 

Deficient ADGRV1 has also been associated with defective focal 
adhesion. ADGRV1 is crucial for the formation of focal adhesions in 
astrocytes [510,511], but not their disassembly [511]. Loss of Adgrv1 leads 
to slower assembly of new focal adhesions due to a disruption in paxillin 
recruitment [511] and focal adhesion kinase expression [510]. This, in turn, 
leads to ineffective mechanical-dependent cell migration [510]. 
Interestingly, loss of ADGRV1 has also been shown to dysregulate 
autophagy. In human immortalized retinal pigment epithelial cells and 
Usher Syndrome IIC patient-derived fibroblasts, loss of functional ADGRV1 
was associated with increased autophagy [512]. Aberrant autophagy could 
also potentially contribute to the gradual degeneration of hearing and 
vision observed in clinical cases of Usher Syndrome IIC. 

Aside from its role in Usher syndrome IIC, ADGRV1 has been associated 
with epilepsy and other neurological dysfunctions. Many human 
mutations have been identified, primarily in children, in various epileptic 
phenotypes [214–226]. Low expression of ADGRV1 is also a possible risk 
factor for epileptogenesis in glioma patients [227]. However, the exact 
mechanisms behind ADGRV1-related seizures remains elusive. Mouse 
models with mutant ADGRV1 have been shown to exhibit susceptibility to 
audiogenic seizures [513,514], suggesting that the mechanisms leading to 
hearing loss may also lead to aberrant activity in auditory pathways. 
Considering that ADGRV1 is highly expressed in the developing mouse 
brain [515] and modulates auditory cortex interneuron development [503], 
it may also play a role in determining the excitatory/inhibitory balance. 
Alternatively, defective autophagy could also contribute to the 
development of seizures. Furthermore, ADGRV1 has been associated with 
germline telomere length in patients with neuroblastoma [228], opioid 
dependence risk [229], and megalencephaly-capillary malformation-
polymicrogyria syndrome [230]. These studies suggest that there are 
further neurological functions and isoforms of ADGRV1 yet to be 
uncovered. 

CONCLUSIONS 

The aGPCRs act as diverse modulators of nervous system function. Due 
to their associations with numerous neurological and psychiatric 
disorders, as well as numerous isoforms, many are appealing candidates 
for specific targeting by therapeutics. To achieve this, further studies into 
many of the aGPCRs are necessary to understand their physiological 
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functions, contributions to etiology of these disorders, and potential as 
pharmacological targets. 
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