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ABSTRACT 

Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized 
by disruptions in cognition, perception, and social behavior. While 
traditional research has focused on neurotransmitter dysregulation, 
growing evidence implicates altered lipid metabolism as a key contributor 
to the disease’s molecular pathology. Lipids are essential for maintaining 
neuronal membrane integrity, facilitating synaptic transmission, 
supporting myelination, and regulating neuroinflammation, all processes 
disrupted in SCZ. 
This review examines the molecular alterations in lipid pathways in SCZ, 
focusing on the dysregulated metabolism of phospholipids, sphingolipids, 
cholesterol, and polyunsaturated fatty acids (PUFAs). We highlight 
findings from genetic studies, neuroimaging, and patient-derived induced 
pluripotent stem cell (iPSC) models, which collectively provide a 
translational framework for studying lipid-related abnormalities. 
Evidence from postmortem brain tissue and peripheral samples 
consistently reveals altered lipid profiles in individuals with SCZ. 
Integrative models combining genetic risk variants with environmental 
stressors such as maternal immune activation and perinatal hypoxia offer 
deeper insights into how lipid dysregulation emerges during 
neurodevelopment and impairs neuronal function. From a clinical 
perspective, targeting lipid metabolism presents promising avenues for 
biomarker discovery, early diagnosis, and therapeutic innovation. Lipid-
based interventions, including targeting of sphingolipid or 
phosphatidylinositol pathways, may be particularly beneficial for 
treatment-resistant cases. 
By integrating molecular lipidomics with patient-specific models and 
systems-level approaches, this review underscores the potential of lipid-
focused strategies to advance our understanding of SCZ pathophysiology 
and guide the development of novel treatments. 
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INTRODUCTION 

SCZ is a severe mental disorder characterized by dysregulated 
cognition, emotion, and behavior that affects approximately 1% of the 
global population. It results from the interaction of genetic and 
environmental factors [1–4]. Much classical research has focused on 
neurotransmitters, particularly dopamine, glutamate, and risk factors and 
associated genes [5–8]. Genome-wide association (GWAS) studies have 
identified copy number variants, single-nucleotide variations, related 
pathways, risk factors, and genes that confer susceptibility. More evidence 
now points to significant metabolic dysfunction as a central component 
and possibly a causative feature of the disorder [9,10]. Individuals with 
SCZ often exhibit high rates of metabolic abnormalities, including insulin 
resistance, altered lipid profiles, mitochondrial dysfunction, and systemic 
inflammation, even before antipsychotic treatment [11–14]. These 
findings have led to a paradigm shift, recognizing that SCZ is not only a 
brain-based disorder but also a metabolic syndrome with 
neuropsychiatric features. Disruptions in glucose and lipid metabolism 
may contribute to the disease’s underlying mechanisms and impact brain 
development, synaptic plasticity, and neurotransmitter systems involving 
dopamine and glutamate. Understanding the bidirectional link between 
brain function and peripheral metabolic health is essential, as it offers 
new opportunities for early detection, mechanistic understanding, and 
treatment strategies. This metabolic perspective may ultimately unify 
various clinical features of SCZ and reshape its management as a neuro-
metabolic disorder. 

Lipid metabolism is an important but often overlooked aspect of how 
SCZ develops. Lipids are essential for brain growth, membrane health, 
synaptic function, and myelination, all of which are impacted in 
individuals with SCZ [15–17]. Changes in lipid profiles, including 
imbalances in phospholipids, sphingolipids, and cholesterol, are 
consistently observed in blood samples and postmortem brain tissue of 
affected people [18]. These changes may contribute to neuroinflammation, 
oxidative stress, and disrupted signaling in neurotransmitter systems like 
dopamine and glutamate. Furthermore, antipsychotic medications can 
worsen lipid imbalances, adding complexity to the disorder’s metabolic 
profile. Recent advances in lipidomics and systems biology are beginning 
to reveal how lipid metabolic pathways interact with genetic and 
environmental risk factors, offering new insights into disease mechanisms 
[15,19]. Therefore, lipid metabolism is not just a consequence of treatment 
or lifestyle but may be a fundamental biological pathway underlying both 
the cognitive and physical features of SCZ. Understanding this lipid–brain 
connection could lead to new biomarkers for early diagnosis and novel 
targets for treatment. 

The purpose of this review is two-fold: first, to highlight and provide a 
perspective on the progress in lipid metabolic alterations in the etiology 
and progression of SCZ, and secondly, to underline that potential disease-
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modifying and treatment strategies may involve a metabolic component. 
This review draws upon the seminal works of many laboratories 
worldwide, and its goal is to provide new directions for future work in the 
altered lipid landscape in SCZ. 

Metabolism and Psychiatric Disorders 

Metabolic homeostasis is crucial for brain health, and increasing 
evidence indicates that its dysfunction is closely linked to the development 
of psychiatric disorders. The emerging field of metabolic psychiatry 
bridges the connection between metabolic balance and mental well-being, 
blending the principles of biological psychiatry and optimal metabolic 
function [20–23]. Changes in glucose and lipid metabolism, mitochondrial 
dysfunction, and systemic inflammation have been observed in conditions 
such as SCZ, bipolar disorder, and depression, often independent of 
medication effects [11,12,14]. These metabolic issues can interfere with 
neuronal signaling, synaptic plasticity, and neurodevelopmental 
processes, contributing to cognitive and emotional symptoms (Figure 1). 

 

Figure 1. Peripheral lipid dysregulation as a precursor to psychosis. A schematic illustration shows how 
peripheral lipid abnormalities may contribute to the onset of psychosis. Blood lipids: Reduced omega-3 
polyunsaturated fatty acids (PUFAs) (EPA, DHA), altered phospholipids (phosphatidylcholines, 
phosphatidylethanolamines), sphingolipid changes, and dyslipidemia (↓ HDL cholesterol, ↑ triglycerides). 
Mechanistic pathways include impaired lipid transport across the blood–brain barrier, systemic 
inflammation, genetic risk loci regulating lipid metabolism, and disrupted apolipoprotein signaling. 
Neurological consequences involve reduced membrane fluidity and receptor dysfunction, impaired 
synaptic vesicle release, oligodendrocyte dysfunction and white matter abnormalities, and increased 
neuroinflammatory signaling. The clinical phenotype includes these molecular and cellular disturbances 

Figure 1.
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manifesting as cognitive deficits, negative symptoms, and the transition from high-risk states to first-episode 
psychosis. HDL = High-Density Lipoprotein, EPA = Eicosapentaenoic Acid, DHA = Docosahexaenoic Acid. 
Arrows pointing downward (↓) indicate downregulation, while arrows pointing upward (↑) indicate 
upregulation. [Created in BioRender. Roychaudhuri, R. https://BioRender.com/xz3oi1m accessed on 10 Nov 
2025]. 

BRAIN LIPID BIOLOGY: STRUCTURE AND FUNCTION 

The human brain is rich in lipids, with about 50% of its dry weight 
made up of various types, broadly categorized as phospholipids, 
sphingolipids, cholesterol, and fatty acids. Phospholipids form the lipid 
bilayer of membranes, featuring a polar headgroup and a nonpolar tail. 
Sphingolipids are a distinct class characterized by a sphingosine backbone 
and are involved in maintaining membrane integrity and signaling. 
Cholesterol contains a sterol nucleus, a hydrocarbon tail, and a hydroxyl 
group, serving as a key component of cell membranes and helping 
maintain fluidity. These molecules are essential for the structural stability 
of neuronal membranes and processes like synaptic transmission, 
myelination, and intracellular signaling. Brain lipids are crucial for 
myelination, the process by which oligodendrocytes or Schwann cells 
form myelin sheaths around axons. Cholesterol provides rigidity and 
structural stability to the myelin membrane. It is essential for membrane 
compaction and proper myelin layering. Phospholipids (e.g., 
phosphatidylcholine, phosphatidylethanolamine) form the basic bilayer 
structure of myelin membranes and contribute to membrane fluidity and 
signaling. Horrobin proposed that SCZ is a disorder of membrane lipid 
metabolism, and an abnormality of membrane lipids affects neurological 
functions and complex brain behaviors [10,24]. Sphingolipids (e.g., 
sphingomyelin, galactosylceramide, sulfatide) are crucial for membrane 
stability and signaling. Galactosylceramide and sulfatide, major 
glycosphingolipids unique to myelin, play roles in membrane adhesion 
and compaction. These major classes of lipids play critical roles in signal 
transduction, the process by which cells convert external signals into 
internal responses. Lipids are therefore not just passive membrane 
components; they actively initiate, coordinate, and propagate cellular 
signals [25–28] (Figure 2). 

https://biorender.com/xz3oi1m
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Figure 2. Phospholipid Metabolism and Membrane Integrity in Neurons. This schematic illustrates key 
phospholipid metabolic pathways and their roles in maintaining neuronal membrane integrity. 
Phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) are produced and 
remodeled via enzymatic reactions involving phospholipases (PLA, PLC, PLD), kinases, and transferases. 
Phospholipase-driven hydrolysis releases bioactive lipids like arachidonic acid, which can activate signaling 
pathways influencing neuroinflammation and synaptic function. Preserving PS asymmetry and membrane 
fluidity is essential for vesicle trafficking, receptor clustering, and synaptic plasticity. Disruption of these 
pathways may weaken membrane integrity, increase vulnerability to oxidative stress and apoptosis, and 
contribute to neuropsychiatric disorders. [Created in BioRender. Roychaudhuri, R. 
https://BioRender.com/a462kr1 accessed on 10 Nov 2025]. 

Phospholipids are key components of cellular membranes and act as 
precursors for signaling molecules. Phosphatidylinositol (PI) and its 
derivatives (e.g., PIP2, PIP3) play a central role in intracellular signaling 
pathways. PIP2 is cleaved by phospholipase C (PLC) into Inositol 
trisphosphate (IP3) → releases Ca2⁺ from the ER. Diacylglycerol (DAG) → 
activates Protein Kinase C (PKC). PIP3, produced by PI3K, activates the 
Akt/PKB pathway (cell growth, survival). Phosphatidylserine (PS) anchors 
signaling proteins (like PKC) to membranes via electrostatic interactions. 
It plays a role in apoptotic signaling when exposed on the outer membrane 
leaflet [29–31]. 

Sphingolipids, especially sphingomyelin and glycosphingolipids, are 
structural and signaling molecules. Ceramide is a central hub in 
sphingolipid metabolism and is involved in stress response, apoptosis, and 
cell cycle arrest [32–34]. Sphingosine-1-phosphate (S1P) regulates cell 
migration, vascular maturation, and immune cell trafficking and binds to 
S1P receptors (G-protein-coupled receptors (GPCRs)) on the cell surface 

Figure 2.

https://biorender.com/a462kr1
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[35,36]. Glycosphingolipids (e.g., gangliosides) modulate receptor activity 
and participate in neurodevelopment and immune responses [37,38]. 
Cholesterol organizes the plasma membrane and forms lipid rafts, 
microdomains that concentrate signaling molecules. Lipid rafts facilitate 
receptor clustering (e.g., T-cell receptors, growth factor receptors) and 
enhance the efficiency and specificity of signal transduction. It influences 
the function of GPCRs and ion channels [39,40] (Figure 2). 

Due to the restrictive properties of the blood–brain barrier, the brain’s 
relative independence from peripheral lipid pools underscores the 
importance of intrinsic lipid regulatory mechanisms within neurons and 
glia. Perturbations in these homeostatic processes may not only underlie 
neurodevelopmental vulnerabilities but also contribute to disease 
progression and treatment response in SCZ. 

The concept of lipid homeostasis, the precise balance between lipid 
synthesis, degradation, and intercellular transport, is critical for 
sustaining normal brain function. 

LIPID DYSREGULATION IN SCZ: EVIDENCE FROM HUMAN STUDIES 

Human studies consistently emphasize lipid dysregulation as a reliable 
and clinically important feature of SCZ. Advances in lipidomics have 
revealed widespread changes in circulating and tissue lipid profiles, 
implicating disruptions in phospholipid, sphingolipid, and cholesterol 
metabolism [15]. These abnormalities are observed across various 
biological matrices, including plasma, serum, cerebrospinal fluid (CSF), 
and postmortem brain tissue, indicating that lipid imbalance is not 
confined to one compartment but reflects systemic and central 
disturbances [41]. These changes seem to be independent of antipsychotic 
treatment, suggesting they may be inherent disease mechanisms rather 
than side effects of medication. Collectively, these findings highlight the 
importance of lipidomics research in understanding the metabolic origins 
of SCZ and in identifying new biomarkers with diagnostic and therapeutic 
potential. 

Plasma and serum studies provide the most direct evidence for 
systemic lipid abnormalities in SCZ [15,42]. Numerous reports have 
documented reduced levels of PUFAs, altered phosphatidylcholine and 
phosphatidylethanolamine species, and shifts in cholesterol and 
triglyceride profiles. These alterations often correlate with negative 
symptoms and cognitive impairment, suggesting functional relevance 
beyond metabolic health (Figure 1). Importantly, several lipidomic 
changes have been observed in antipsychotic-naïve patients, reinforcing 
the view that dyslipidemia may be a core component of the disorder rather 
than solely a treatment consequence [43,44]. Together, plasma and serum 
data highlight lipid dysregulation as both a potential biomarker reservoir 
and a window into the systemic manifestations of SCZ. 

CSF analyses provide a more direct reflection of central nervous system 
biochemistry, and studies have identified significant lipid alterations in 
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SCZ. Reductions in phosphatidylserine, sphingomyelin, and specific PUFAs 
have been reported, consistent with impaired membrane integrity and 
altered neurotransmission [24,42,45–47]. These findings point to 
disturbances in lipid metabolism at the brain level, complementing 
systemic signatures observed in blood. Although sample sizes in CSF 
studies remain modest due to limited availability, the reproducibility of 
lipid abnormalities underscores their potential as central biomarkers of 
disease processes. 

Postmortem investigations have provided critical insights into region-
specific lipid dysregulation in SCZ. Alterations in phospholipids, 
sphingolipids, and cholesterol metabolites have been identified in cortical 
and subcortical regions, implicating disrupted lipid metabolism in 
synaptic dysfunction and myelin integrity [17,42,46,47]. These 
abnormalities often overlap with pathways identified in plasma and CSF, 
reinforcing the systemic central link in lipid pathology. Importantly, 
postmortem lipidomics also highlights heterogeneity across brain regions, 
suggesting that localized metabolic imbalances may contribute to the 
diverse symptom dimensions of SCZ. Collectively, these studies strengthen 
the hypothesis that lipid dysregulation is not merely epiphenomenal but 
central to disease pathophysiology. 

Taken together, evidence from plasma, serum, CSF, and postmortem 
brain tissue converges on the view that lipid dysregulation is a robust and 
multidimensional feature of SCZ. The consistency of abnormalities across 
peripheral and central compartments suggests that lipid imbalance is not 
an isolated metabolic disturbance but a systemic hallmark of the disorder. 
These findings strengthen the rationale for integrating lipidomic 
biomarkers into clinical research, both to improve early detection and to 
guide personalized interventions. Moreover, the overlap between 
peripheral and central lipid signatures raises the possibility that accessible 
biofluids, such as plasma, could serve as practical surrogates for brain 
pathology, bridging mechanistic insight with translational utility. The 
following are a few classes of lipids altered in the onset of psychosis. 

Polyunsaturated Fatty Acids (PUFAs) 

Several studies have shown reduced levels of omega-3 and omega-6 
PUFAs in individuals at risk for psychosis. Lower levels of 
Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA), which are 
essential components of neuronal membranes, have been linked to a 
higher chance of developing psychosis in prospective cohorts. These 
deficiencies may impair membrane fluidity, neurotransmitter receptor 
function, and anti-inflammatory signaling, potentially leading to early 
cognitive and behavioral changes. Supporting this, intervention studies 
indicate that supplementing omega-3 fatty acids in ultra-high risk (UHR) 
individuals can decrease the transition rates to psychosis. However, 
results from larger trials have been inconsistent [28,48,49] (Figure 1). 
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Phospholipids and Sphingolipids 

Lipidomic profiling has revealed abnormalities in 
phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins 
in both UHR and first episode psychosis (FEP) populations [15,50,51]. 
Altered phospholipid species may impair vesicle formation, synaptic 
transmission, and intracellular signaling cascades. Moreover, 
disturbances in sphingolipid metabolism have been linked to white matter 
abnormalities and oligodendrocyte dysfunction, processes increasingly 
recognized as central to SCZ pathophysiology (Figure 1) [52,53]. 

Cholesterol and Lipoproteins 

Abnormalities in cholesterol metabolism have been reported before 
antipsychotic treatment. Reduced high-density lipoprotein (HDL) 
cholesterol and elevated triglycerides have been observed in FEP patients, 
with some studies suggesting an association with negative symptom 
severity and cognitive deficits [54]. Given cholesterol’s essential role in 
synapse formation and myelination, even modest deviations may have 
significant neurodevelopmental consequences [55]. The involvement of 
apolipoproteins such as ApoE further highlights the intersection of lipid 
transport pathways and genetic susceptibility to psychosis (Figure 1)[56]. 

Mechanistic Links Between Peripheral and Central Lipids. 

The connection between circulating lipid profiles and central nervous 
system homeostasis remains an area of active investigation [15]. Proposed 
mechanisms include impaired lipid transport across the blood–brain 
barrier, peripheral inflammatory states that perturb lipid metabolism, 
and shared genetic regulation of lipid pathways and SCZ risk loci. While 
direct causality remains to be established, converging evidence suggests 
that blood lipid abnormalities may mirror or even drive central metabolic 
disruptions relevant to psychosis (Figure 1) [50,57]. 

Clinical Implications of Lipid Dysregulation. 

The reproducibility of lipidomic signatures in pre-psychotic and FEP 
populations positions blood lipid profiles as promising biomarkers for 
early detection and risk stratification. In addition, they raise the possibility 
of novel therapeutic interventions targeting lipid metabolism, such as 
dietary supplementation, pharmacological modulation of lipid pathways, 
or anti-inflammatory strategies. However, heterogeneity across cohorts, 
small sample sizes, and potential confounding factors such as diet and 
lifestyle emphasize the need for large-scale, longitudinal, and multi-omic 
studies [58–62]. 

MECHANISTIC LINKS: HOW LIPID DISRUPTION MAY INFLUENCE 
SCZ. 
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The biological effects of lipid imbalance go beyond metabolic 
comorbidity and provide possible insights into the mechanisms 
underlying SCZ. Lipids are crucial for maintaining neuronal membrane 
integrity, synaptic vesicle movement, and receptor activity, and their 
disruption may directly affect neurotransmission and neural connectivity 
[63,64]. For instance, disturbances in phospholipids and sphingolipids can 
impair membrane fluidity and signal transduction, while cholesterol 
imbalance impacts synapse formation and myelination [17,65]. 
Additionally, oxidative stress and inflammation, both common in SCZ, can 
worsen lipid peroxidation, further harming neuronal function [46,65–67]. 
These mechanisms collectively suggest that lipid disruption is not just an 
innocent bystander but a potential key player in the neurobiology and 
symptoms of SCZ (Figure 2). 

Lipids are essential for brain development, where they guide neuronal 
migration, dendritic growth, and synapse formation [37,68]. Disruption of 
lipid availability or composition during critical developmental windows 
may interfere with synaptic pruning, a process already implicated in SCZ 
risk. Abnormal pruning, driven in part by altered lipid-mediated signaling, 
could lead to excessive synapse elimination and contribute to long-term 
deficits in neural circuitry and cognition [7,69]. 

Phospholipids and PUFAs regulate receptor function and intracellular 
signaling cascades for key neurotransmitters. Altered lipid rafts can 
impair dopamine receptor trafficking and glutamate receptor clustering, 
weakening synaptic signaling [70,71]. These disruptions may help explain 
how lipid imbalance converges on dopaminergic hyperactivity and 
glutamatergic hypofunction, the two core neurochemical hypotheses of 
SCZ. 

Lipid dysregulation is tightly coupled to inflammatory and redox 
pathways [72,73]. PUFAs, which comprise neuronal membranes, are 
substrates for pro-inflammatory eicosanoids, and oxidative stress readily 
triggers lipid peroxidation, generating toxic byproducts that damage 
membranes and proteins [28]. Evidence of increased lipid peroxidation in 
SCZ supports a model in which metabolic imbalance and oxidative injury 
converge to exacerbate neural dysfunction [74,75]. Reactive carbonyl 
species (RCS), such as methylglyoxal, 3-deoxyglucosone, and 4-
hydroxynonenal (4-HNE), are also produced during oxidative stress and 
lipid peroxidation. These reactive intermediates generate advanced 
glycation and lipoxidation end-products (AGEs/ALEs), which interfere 
with membrane and cytoskeletal functions. Elevated serum AGEs, 
including pentosidine and carboxymethyl-lysine, have been found in 
individuals with SCZ before starting antipsychotic treatment, indicating 
that carbonyl stress might be an inherent pathogenic factor in the disorder 
[76] (Figure 3). 
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Figure 3. Oxidative stress causes lipid peroxidation and affects neuronal function. Polyunsaturated fatty 
acids (PUFAs) are vital parts of neuronal phospholipid membranes, helping maintain their structure and 
supporting signaling functions. During oxidative and carbonyl stress, reactive oxygen species (ROS) and 
reactive carbonyl species (RCS), such as superoxide, hydroxyl radicals, methyl glyoxal, and 3-
deoxyglucosone, attack lipids containing PUFAs, initiating lipid peroxidation through enzymatic 
(lipoxygenases) and non-enzymatic (redox-active metals, Fenton Reaction) pathways. These reactions 
produce highly reactive aldehydes, including 4-hydroxy-2-nonenal (HNE), malondialdehyde (MDA), and 
acrolein, which weaken membrane stability and cause more oxidative damage. The buildup of lipid 
peroxidation products increasingly links to neuronal dysfunction and the development of negative 
symptoms in neuropsychiatric disorders [1]. [Created in BioRender. Roychaudhuri, R. 
https://BioRender.com/wcbzvp6 accessed on 10 Nov 2025]. 

Lipids also serve as key energy substrates and regulators of 
mitochondrial activity. Abnormalities in fatty acid utilization and 
mitochondrial lipid composition have been implicated in reduced 
bioenergetic efficiency in SCZ. These disruptions may compromise 
neuronal resilience and contribute to synaptic deficits [67]. 

Collectively, these mechanistic insights suggest that lipid dysregulation 
in SCZ is not confined to a single pathway but reflects a multifaceted 
influence spanning development, neurotransmission, and cellular 
resilience. Disruptions in lipid composition can compromise membrane 
integrity, derail neurodevelopmental processes such as synaptic pruning, 
and alter dopaminergic and glutamatergic signaling, thereby influencing 
core symptoms (Figure 3). In parallel, deficits in myelination, heightened 
oxidative stress, and impaired mitochondrial function point to converging 
pathways that weaken neural connectivity and plasticity. Rather than 
being secondary to antipsychotic exposure or metabolic comorbidity, lipid 

https://biorender.com/wcbzvp6
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imbalance may represent a primary vulnerability that interacts with 
genetic and environmental factors to shape the course of illness. Framing 
lipid disruption within this integrative model highlights its potential both 
as a biomarker of disease processes and as a novel target for therapeutic 
intervention. 

DYSLIPIDEMIA IN SCZ 

Dyslipidemia is a highly prevalent metabolic abnormality in 
individuals with SCZ, manifesting as elevated triglycerides, reduced HDL 
cholesterol, and variable alterations in low-density lipoprotein (LDL) 
cholesterol and total cholesterol [77,78]. While antipsychotic medications, 
particularly second-generation agents, are well-recognized contributors to 
adverse lipid profiles, a growing body of evidence suggests that 
dyslipidemia is not solely a treatment-related phenomenon. Altered lipid 
levels have been observed in antipsychotic-naïve patients and those 
experiencing a FEP, implicating intrinsic metabolic disturbances in the 
disorder [54,79]. Dyslipidemia may reflect disruptions in lipid transport, 
apolipoprotein signaling, or systemic inflammation, all of which converge 
on pathways critical for brain lipid homeostasis. Importantly, 
dyslipidemia has been linked to cognitive impairment, negative symptom 
severity, and increased cardiovascular morbidity, underscoring its dual 
relevance to both psychiatric and somatic health outcomes [50,54,77]. The 
interplay between dyslipidemia and SCZ pathophysiology remains 
incompletely understood, but emerging lipidomic and genetic studies 
point toward shared mechanisms that may underlie both metabolic and 
neuropsychiatric phenotypes. 

NEURONAL VS. ASTROCYTE LIPID METABOLISM IN SCZ 

Neurons heavily depend on an external supply of lipids. They have 
limited ability to synthesize PUFAs and rely on astrocytes for essential 
fatty acids and cholesterol [80–82]. Neuronal lipids mainly support 
membrane excitability, receptor function, and synaptic vesicle turnover. 
Astrocytes function as the metabolic hub for lipid processing. They import 
dietary precursors, perform elongation and desaturation of fatty acids 
using enzymes like Fatty Acid Desaturases (FADS 1 and 2) and Elongation 
of Very Long Chain Fatty acids (ELOVLS), and package PUFAs and 
cholesterol into Apo E-containing lipoproteins for neuronal delivery [83–
86]. Lipidomic studies show decreased DHA and Arachidonic Acid (AA) 
content in neuronal membranes, affecting NMDA receptor activity, 
dopamine signaling, and synaptic plasticity [64,87,88]. Increased lipid 
peroxidation and oxidative stress make neuronal membranes particularly 
vulnerable [10,89]. 

While some transcriptomic data from astrocytes show downregulation 
of FADS1/2 and lipid transport genes, impairing PUFA synthesis and lipid 
shuttling [90–92], there is no clear evidence in astrocytes from SCZ 
postmortem tissue that lipid transport genes (e.g., ABCA1, ABCG1: ATP 
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Binding Cassette Sub Family A Member 1, ATP Binding Cassette Sub Family 
G Member 1) are significantly downregulated in a way clearly tied to 
impaired PUFA synthesis or shuttling, though there are changes in 
cholesterol-related genes (SNAP: Synaptic Neuron and Astrocyte Program). 
Overactive astrocytic AA metabolism promotes pro-inflammatory 
prostaglandins and leukotrienes, fueling neuroinflammation. Studies 
have shown that deficient release of DHA-rich lipids weakens neuronal 
resilience and synaptic repair [93–95]. 

Functional Consequences of Neuron–Astrocyte Lipid Crosstalk 

Synaptic Dysfunction 

Neurons deprived of astrocyte-derived PUFAs show disrupted receptor 
signaling and impaired neurotransmission [96,97]. 

Neuroinflammation 

Astrocytic overproduction of ω-6-derived eicosanoids may amplify 
microglial activation, while reduced ω-3-derived mediators diminish anti-
inflammatory tone [98,99]. 

Energy Metabolism 

Impaired astrocyte–neuron lipid trafficking contributes to metabolic 
inflexibility, a recurring feature in SCZ [10,86]. 

Therapeutic and Biomarker Implications 

Both neuronal and astrocyte metabolism and their crosstalk provide 
avenues for therapeutic interventions and have implications for 
biomarker discovery. 
- Astrocyte-directed therapies: Enhancing PUFA synthesis and transport 

could restore neuronal lipid balance. 
- Precision ω-3 supplementation: May be more effective if stratified by 

astrocytic FADS/ELOVL genotype or lipidomic profile. 
- Exosome-based biomarkers: Distinguishing neuron-derived vs 

astrocyte-derived vesicle lipid signatures could provide cell-type-
specific readouts of SCZ pathology. 

GENETIC AND EPIGENETIC INSIGHTS 

Advances in genomics and epigenomics have begun to illuminate the 
heritable and regulatory components linking lipid metabolism to SCZ. 
GWAS studies have identified risk loci in genes involved in lipid synthesis, 
transport, and remodeling, suggesting that inherited perturbations in lipid 
homeostasis may contribute to disease susceptibility [100–104]. 
Complementary epigenetic analyses reveal that DNA methylation, histone 
modifications, and noncoding RNAs can regulate the expression of lipid-
related genes in the brain and periphery, potentially influencing both 
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developmental trajectories and adult neuronal function [105,106]. 
Betaine-dependent one-carbon metabolism directly regulates 
phosphatidylcholine synthesis through the PEMT 
(phosphatidylethanolamine N-methyltransferase) and BHMT (betaine-
homocysteine methyltransferase) pathways. Recent studies have shown 
that SCZ is associated with reduced plasma betaine and impaired BHMT–
PEMT activity, resulting in abnormal lipid methylation, oxidative 
imbalance, and NMDA receptor hypofunction. In Kif3b⁺/⁻ mice (Kinesin 
family 3B), reduced KIF3-dependent CRMP2 (Collapsin Response Mediator 
Protein 2) trafficking leads to neuronal and behavioral deficits, which are 
rescued by betaine supplementation through restoration of CRMP2 
transport [107,108]. Integrating these genetic and epigenetic findings with 
lipidomic profiles offers a powerful framework to understand how 
inherited and environmentally responsive mechanisms converge to shape 
lipid disturbances in SCZ, providing insights into both pathophysiology 
and potential therapeutic targets. 

Genetic Variants in Lipid Metabolism Genes 

Accumulating evidence suggests that common and rare genetic 
variants in lipid metabolism genes contribute to SCZ susceptibility. Among 
the most studied is APOE, which encodes apolipoprotein E, a key regulator 
of cholesterol transport and lipid homeostasis in the brain. Variants in 
APOE, particularly the ε4 allele, have been associated not only with altered 
lipid profiles but also with cognitive deficits and brain structural changes 
relevant to SCZ [8,109–111]. Similarly, genes involved in fatty acid 
desaturation, such as FADS1 and FADS2, which regulate the biosynthesis 
of long-chain PUFAs, show associations with both altered plasma lipid 
composition and SCZ risk [112–114]. Disruption of these pathways may 
influence membrane fluidity, neurotransmission, and neuroinflammation. 

Transcriptional regulators of lipid metabolism, including SREBF1 
(sterol regulatory element-binding transcription factor 1), also harbor 
variants linked to SCZ. While SREBF1 controls the expression of genes 
involved in cholesterol and fatty acid synthesis, and its dysregulation can 
impact neuronal membrane composition, myelination, and synaptic 
function, there is one report on a myelin-related gene, which is 
contradictory [100,105,115,116]. Collectively, these genetic findings 
support a model in which inherited variation in lipid metabolism genes 
shapes individual vulnerability to SCZ, potentially by modulating both 
systemic lipid profiles and brain-specific lipid-dependent processes. 

Transcriptomic and Methylation Evidence for Lipid Pathway 
Dysregulation 

Emerging transcriptomic studies in SCZ provide compelling evidence 
that lipid metabolism is disrupted at the gene expression level [6,46,117]. 
Analyses of postmortem brain tissue, peripheral blood, and patient-
specific iPSC derived neurons reveal altered expression of genes involved 
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in phospholipid synthesis, fatty acid elongation, cholesterol biosynthesis, 
and sphingolipid metabolism [46,118,119]. For instance, downregulation 
of SREBF1, FADS1/2, and PEMT has been reported, suggesting that both 
membrane composition and lipid signaling pathways may be 
compromised in SCZ [10,113,120]. These transcriptional alterations often 
correlate with neuroanatomical changes, cognitive deficits, or metabolic 
comorbidities, highlighting their functional relevance. 

Epigenetic modifications further reinforce the role of lipid pathway 
dysregulation. DNA methylation profiling in brain and blood samples 
indicates hyper or hypomethylation at promoters and enhancers of lipid-
related genes, potentially altering their transcriptional activity [121–124]. 
Histone modifications and noncoding RNAs, including microRNAs 
targeting lipid metabolism transcripts, have also been implicated in 
modulating lipid homeostasis in SCZ [125–128]. Together, transcriptomic 
and epigenetic evidence suggest that lipid pathway disruption arises from 
both genetic predisposition and dynamic regulatory processes, providing 
mechanistic insight into how systemic and central lipid abnormalities may 
develop in the disorder. 

Collectively, genetic variants, transcriptomic changes, and epigenetic 
modifications all impact lipid metabolic pathways in SCZ, emphasizing a 
multi-layered framework for disease risk. Inherited variants in genes like 
APOE, FADS, and SREBF1 may make individuals more likely to have 
altered lipid levels, while abnormal gene expression in neurons and 
peripheral tissues reflects both underlying disease mechanisms and 
adaptive responses. Epigenetic mechanisms, such as DNA methylation, 
histone modifications, and microRNA regulation, further influence lipid-
related gene activity, potentially connecting environmental factors to 
metabolic disruptions. This integrated view highlights lipid dysregulation 
as a key aspect of SCZ that results from the interaction of genetic 
vulnerability and dynamic regulatory processes, offering potential 
biomarkers and new therapeutic targets. 

EXPERIMENTAL MODELS OF SCZ 

Understanding the complex interplay between lipid metabolism and 
SCZ requires robust experimental models that recapitulate key aspects of 
the disorder. SCZ is a multifactorial condition with genetic, environmental, 
and neurodevelopmental contributions, and accordingly, preclinical 
models are diverse, encompassing pharmacological, genetic, and 
environmental approaches [129–131]. 

Pharmacological Models 

Pharmacologically induced models typically involve the administration 
of compounds that perturb neurotransmitter systems implicated in SCZ, 
such as dopamine or glutamate. For instance, the administration of N-
methyl-D-aspartate (NMDA) receptor antagonists (e.g., ketamine, 
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phencyclidine) induces behavioral and cognitive deficits reminiscent of 
the negative and cognitive symptoms of SCZ [132,133]. 

Non-human primates (NHPs) (especially macaques, marmosets) have 
prefrontal cortex and other brain structures more similar in 
cytoarchitecture, connectivity, and developmental timeline to humans 
than rodents. This provides relevance in modelling higher cognitive 
functions (working memory, context processing, social cognition). NHPs 
provide better translational read-outs for Electro Encephalogram/Event 
Related Potential (ERP) signals and correspond more directly with human 
ERP oscillation biomarkers (e.g., Mismatch Negativity, P3a oscillation, 
Auditory Steady State Response), enabling comparison of neural 
signatures. These models also alter lipid composition in the brain, 
including membrane phospholipids and sphingolipids, highlighting 
potential mechanistic links between neurotransmission dysregulation and 
lipid homeostasis [134–137]. 

Genetic Models 

Genetic manipulations provide insight into SCZ-associated 
susceptibility genes and their effects on lipid metabolism. Mouse models 
targeting genes such as DISC1 (Disrupted in Schizophrenia1), COMT 
(Catechol-O-Methyl Transferase), NRG1 (Neuregulin1), and SRR (Serine 
Racemase) exhibit behavioral abnormalities relevant to SCZ, as well as 
alterations in lipid signaling pathways, including sphingolipid and 
phosphatidylinositol metabolism [138–144]. While mouse models do not 
recapitulate the core symptoms of SCZ, they are particularly useful for 
studying the developmental trajectory of lipid dysregulation in synaptic 
and neuronal deficits [145]. 

Environmental and Neurodevelopmental Models 

Environmental stressors, such as prenatal immune activation or 
perinatal hypoxia, are widely used to model the developmental origins of 
SCZ [146–151]. Maternal immune activation models, induced by poly 
(Inosinic: Cytidylic acid) or lipopolysaccharide exposure during gestation, 
produce offspring with behavioral phenotypes akin to SCZ, accompanied 
by perturbations in brain lipid composition and oxidative stress markers 
[152]. These findings support the notion that early-life disruptions in lipid 
metabolism may contribute to disease pathophysiology. 

Integrated Approaches 

Increasingly, combinatorial models that integrate genetic susceptibility 
with environmental insults provide a more comprehensive recapitulation 
of SCZ pathology [153–155]. Such models are valuable for examining how 
lipid metabolism intersects with neurodevelopmental and 
neurotransmitter pathways to influence disease onset and progression. 
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Overall, these experimental models offer a critical platform to 
investigate the role of lipids in SCZ, providing mechanistic insights into 
how alterations in membrane composition, lipid signaling, and energy 
metabolism may contribute to behavioral and cognitive deficits. Future 
studies leveraging multi-omics approaches in these models are poised to 
clarify lipid-centric therapeutic targets for SCZ. 

Induced Pluripotent Stem Cell Models of SCZ 

iPSCs have emerged as a powerful platform to model SCZ in a patient-
specific context, bridging the gap between clinical observations and 
mechanistic studies. iPSCs are derived from somatic cells of patients and 
healthy controls and can be differentiated into relevant neural cell types, 
including cortical neurons, interneurons, and glial cells [118,156]. This 
approach allows for the investigation of cellular and molecular 
phenotypes associated with SCZ, including those related to lipid 
metabolism. 

Recapitulation of Disease-Relevant Phenotypes 

iPSC-derived neurons from SCZ patients exhibit abnormalities in 
synaptic connectivity, dendritic spine morphology, mitochondria, and 
neurotransmitter signaling. Importantly, these cellular phenotypes 
contribute to the observed defects in neuronal communication and 
network activity [157–159]. 

Genetic and Environmental Modeling 

iPSCs enable the study of both genetic and environmental contributions 
to SCZ. Patient-derived iPSCs carrying risk alleles in genes such as DISC1, 
NRG1, SRR, and COMT may show altered lipid metabolic pathways, 
including phosphatidylinositol and sphingolipid signaling, which can 
affect synaptic plasticity and neurodevelopment; however, these studies 
are currently lacking [140,141,160,161]. Additionally, iPSC-derived 
neurons can be exposed to environmental stressors (e.g., inflammatory 
cytokines, oxidative stress) to model gene-environment interactions and 
their impact on lipid homeostasis. 

High-Throughput and Multi-Omics Applications 

iPSC platforms support high-throughput screening and multi-omics 
approaches, allowing for systematic investigation of lipid-related 
pathways in SCZ. Lipidomic analyses in iPSC-derived neurons may identify 
disease-specific lipid signatures and connect them to functional deficits, 
offering mechanistic insight into how lipid metabolism interacts with 
synaptic and cognitive abnormalities [162,163]. 

Unresolved Questions in the Metabolic Foundations of SCZ 
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A comprehensive survey and assessment of the literature brings forth 
the following unanswered questions: 
1. Causality versus Consequence: Are lipid and metabolic abnormalities 

the primary causes of SCZ, or are they secondary effects of 
antipsychotic treatment, lifestyle factors, or disease progression? 

2. Lipid Subtype Specificity: Which lipid classes (e.g., phospholipids, 
sphingolipids, cholesterol, fatty acids) are most critically affected in SCZ, 
and how do these alterations vary across different brain regions or cell 
types? 

3. Mechanistic Links: How do lipid dysregulation and other metabolic 
changes (e.g., glucose metabolism, mitochondrial function) interact 
with neurotransmitter systems to influence cognitive, negative, and 
positive symptoms? 

4. Developmental Timing: At what stage(s) of neurodevelopment do 
metabolic changes emerge, and do early lipid disturbances contribute 
to vulnerability before clinical onset? 

5. Gene-Environment Interactions: How do genetic risk factors for SCZ 
intersect with environmental influences (e.g., prenatal stress, diet, 
inflammation) to shape metabolic phenotypes? 

6. Peripheral vs. Central Metabolism: To what extent do peripheral 
metabolic signatures reflect central nervous system lipid and energy 
metabolism, and can they serve as reliable biomarkers? 

7. Sex Differences: How do sex-specific metabolic and lipid alterations 
contribute to differential disease risk, symptomatology, and treatment 
response? 

8. Therapeutic Intervention: Can targeting lipid metabolism or broader 
metabolic pathways prevent or reverse functional deficits, and what 
are the most promising interventions? 

9. Longitudinal Dynamics: How do metabolic profiles change across 
illness stages, from prodrome to chronic SCZ, and what predicts 
resilience versus deterioration? 

10. Interplay with Oxidative Stress and Inflammation: How do lipid 
peroxidation, oxidative stress, and neuroinflammation interact with 
metabolic dysfunction in SCZ? 

CLINICAL IMPLICATIONS AND APPRECIATION OF METABOLOMIC 
INTERVENTIONS. 

Targeting Metabolic Dysregulation 

- Metabolic abnormalities, including altered lipid profiles, insulin 
resistance, and oxidative stress, are common in SCZ and may contribute 
to cognitive and negative symptoms (Figure 3). 

- Therapies aimed at restoring lipid homeostasis through diet, exercise, 
or pharmacological modulation of lipid metabolism could complement 
conventional antipsychotic treatments. 
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Personalized Medicine Approaches 

- Lipidomics and metabolomics profiling may help stratify patients 
based on metabolic risk or identify those likely to respond to specific 
interventions. 

- Genetic and iPSC-based studies can inform individualized therapy 
targeting disrupted metabolic pathways. 

Adjunctive Pharmacological Strategies 

- Agents that modulate lipid metabolism, mitochondrial function, or 
oxidative stress (e.g., omega-3 fatty acids, peroxisome proliferator-
activated receptor agonists, N-acetylcysteine) are being explored as 
adjuncts to improve cognition and negative symptoms [164–166]. 

- Understanding drug–lipid interactions may optimize antipsychotic 
efficacy while minimizing metabolic side effects. 

Early Intervention and Prevention 

- Detecting metabolic alterations before clinical onset could identify at-
risk individuals and guide early lifestyle or pharmacological 
interventions to prevent or delay disease progression. 

- Prenatal and early-life nutritional strategies may modulate lipid-
related neurodevelopmental risk factors. 

Monitoring and Reducing Treatment-Related Metabolic Risk 

- Many antipsychotics exacerbate dyslipidemia and weight gain; 
integrating lipid and metabolic monitoring into clinical practice can 
improve long-term outcomes [167,168]. 

- Personalized selection of antipsychotics based on metabolic risk profile 
may reduce cardiovascular morbidity. 

Integration of Multi-Modal Therapies 

- Combining pharmacological, behavioral, and dietary interventions 
targeting metabolism could address both psychiatric symptoms and 
systemic health, potentially improving quality of life and life 
expectancy. 

MOLECULAR INSIGHTS OF LIPID DYSREGULATION IN SCZ 

Insights into the molecular mechanisms of lipid dysregulation and 
altered phospholipid metabolism in SCZ will provide a foundation for 
novel therapeutic strategies. Understanding how these molecular 
alterations affect synaptic function, neuronal signaling, and 
neurodevelopment may guide the development of targeted interventions, 
including pharmacological agents, dietary modulation, or lifestyle 
approaches. Molecular profiling could also enable patient stratification, 
early detection of high-risk individuals, and monitoring of treatment 
response. Ultimately, integrating these molecular insights with clinical 
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care has the potential to improve symptom management, reduce 
metabolic comorbidities, and personalize therapy in SCZ. 

Biomarkers and Diagnostic Potential 

Molecular and metabolic alterations in SCZ, including changes in lipid 
composition, oxidative stress markers, and synaptic proteins, hold 
promise as biomarkers for early diagnosis and disease stratification. 
Lipidomics and metabolomics profiling of peripheral blood or CSF may 
identify disease-specific signatures, enabling patient-specific risk 
assessment and monitoring of treatment response. Integration with 
genetic, imaging, and iPSC-derived cellular data could further enhance 
diagnostic precision and guide personalized therapeutic strategies. 

Future Directions/Perspectives 

Understanding metabolic and molecular alterations in SCZ is laced with 
challenges, including patient heterogeneity, variable disease progression, 
and confounding effects of medication and lifestyle. However, advances in 
iPSC models, lipidomics, multi-omics integration, and high-resolution 
imaging offer unprecedented opportunities to uncover disease 
mechanisms. These tools may enable the identification of novel 
biomarkers, therapeutic targets, and personalized interventions, bridging 
the gap between molecular insight and clinical application. 

Future research in SCZ will benefit from integrating molecular, 
metabolic, and cellular insights with clinical data to unravel disease 
mechanisms and heterogeneity. Advances in iPSC models, organoids, 
multi-omics, and high-resolution imaging promise to illuminate how lipid 
and metabolic dysregulation contribute to symptom development. 
Translating these insights into early diagnostics, targeted therapies, and 
personalized interventions offers a path toward improved outcomes and 
precision care for individuals with SCZ. 

Conclusions and Outlook 

SCZ is increasingly recognized as a disorder with profound metabolic 
and lipid dysregulation that intersects with neurodevelopment, synaptic 
function, and neurotransmitter signaling. Experimental models, including 
iPSCs, animal studies, and multi-omics approaches, have begun to uncover 
the molecular mechanisms linking lipid homeostasis to cognitive and 
behavioral deficits. Despite challenges such as patient heterogeneity and 
the influence of medications, these insights offer promising avenues for 
identifying biomarkers, therapeutic targets, and personalized 
interventions. Moving forward, integrating molecular, cellular, and 
clinical data will be essential to translate these discoveries into effective 
strategies for early diagnosis, treatment, and improved patient outcomes, 
positioning metabolic and lipid-focused research at the forefront of SCZ 
therapeutics. 
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