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ABSTRACT 

We report on the ongoing project “PREDICT-ADFTD: Multimodal Imaging 
Prediction of AD/FTD and Differential Diagnosis” describing completed 
and future work supported by this grant. This project is a multi-site, multi-
study collaboration effort with research spanning seven sites across the 
US and Canada. The overall goal of the project is to study 
neurodegeneration within Alzheimer’s Disease, Frontotemporal Dementia, 
and related neurodegenerative disorders, using a variety of brain imaging 
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and computational techniques to develop methods for the early and 
accurate prediction of disease and its course. The overarching goal of the 
project is to develop the earliest and most accurate biomarker that can 
differentiate clinical diagnoses to inform clinical trials and patient care. In 
its third year, this project has already completed several projects to 
achieve this goal, focusing on (1) structural MRI (2) machine learning and 
(3) FDG-PET and multimodal imaging. Studies utilizing structural MRI 
have identified key features of underlying pathology by studying 
hippocampal deformation that is unique to clinical diagnosis and also 
post-mortem confirmed neuropathology. Several machine learning 
experiments have shown high classification accuracy in the prediction of 
disease based on Convolutional Neural Networks utilizing MRI images as 
input. In addition, we have also achieved high accuracy in predicting 
conversion to DAT up to five years in the future. Further, we evaluated 
multimodal models that combine structural and FDG-PET imaging, in 
order to compare the predictive power of multimodal to unimodal models. 
Studies utilizing FDG-PET have shown significant predictive ability in the 
prediction and progression of disease.  

KEYWORDS: dementia; Alzheimer’s Disease; brain imaging; FDG-PET; 
machine learning; Convolutional Neural Networks; morphometry; sex-
differences; C9orf72 

ABBREVIATIONS  

MRI, magnetic resonance imaging; PET, positron emission topography; AD, 
Alzheimer’s Disease; FTD, frontotemporal dementia 

INTRODUCTION  

Frontotemporal dementia (FTD), with the behavioral variant (bvFTD) 
being the most common form, is the leading cause of dementia in people 
under the age 60 [1], with an estimated prevalence of 15–22/100,000 [1–3]. 
Alzheimer’s dementia (AD) is the most common form of dementia in adults 
over the age of 65, affecting 5 million Americans (source: NINDS). Even 
though advances in imaging, pathology, and genetics research have 
improved our understanding of the underlying diseases [4–18], accurate 
antemortem diagnosis, as well as sensitive and specific biomarkers that 
can facilitate a differential diagnosis, remain elusive [19]. This is because 
specific neuropathologies are usually associated with a spectrum of 
clinical syndromes, and different clinical syndromes are related to 
multiple underlying neuropathologies [20,21]. For example, 
neuropathologies characteristic of Alzheimer’s disease are found in  
15–30% of FTD patients [22], and significant numbers of AD cases carry 
neuropathological markers of frontotemporal lobar degeneration [23]. 
Because the success of disease-altering therapies depends largely on early 
and specific diagnosis, it is critical to develop sensitive and specific 
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biomarkers for the underlying neuropathologies, which can then be used 
to identify the most appropriate patient populations for specific disease-
altering interventions [24]. This project addresses the unmet need for 
antemortem biomarkers that can distinguish between dementias caused 
by different underlying neuropathologies. 

PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and 
Differential Diagnosis is a four-year award, which is currently in its third 
year. This project was awarded in order to broadly study 
neurodegeneration using a variety of imaging and computational 
techniques so that we may be able to develop methods for the early and 
accurate prediction of disease and its course. The overarching goal of the 
project is to develop the earliest and most accurate biomarker that can 
differentiate clinical diagnoses. It is crucial to not only learn about FTD 
and AD, but related dementias in order to determine unique profiles of 
disease. The more known about typical onset, clinical presentation, 
neuropathology, including spatial location and temporal spread, genetic 
influence, and gross anatomy of each disease, the more we will be able to 
diagnose and treat in confidence. The following grant report will discuss 
several studies that have been conducted through the funding of this grant, 
ongoing studies, and future research based on these preliminary results.  

Overall Project Structure: A Multi-Site, Multi-Study Collaboration 
Effort  

The funded project is widely collaborative, with research spanning 
seven sites across the US and Canada. These sites include Northwestern 
University Feinberg School of Medicine (NUFSM), Simon Frasier 
University (SFU), University of British Columbia (UBC), Johns Hopkins 
University (JHU), University of California at San Francisco (UCSF), The 
Mayo Clinic, and University of Southern California (USC). A graphical 
representation of the study design can be seen in Figure 1. 

The lead site for the project is Northwestern University Feinberg School 
of Medicine under Principal Investigator Dr. Lei Wang. Dr. Wang 
developed a career that utilizes training in engineering, mathematics, and 
computer science to develop and apply computational anatomy tools to 
the analysis of multimodal neuroimaging datasets. His work exploits the 
use of multiple regions, multiple modalities, and multiple time points that 
can improve the understanding, tracking, and detection of these 
neuropsychiatric diseases. As PI and co-I on a number of NIH- and 
foundation- funded studies, Dr. Wang has established a track record of 
publication, collaboration, and leadership in these areas. 

The M-PI for the project, Dr. Rosen, leads the University of California at 
San Francisco team. He is PI of the Frontotemporal Lobar Degeneration 
Neuroimaging Initiative (FTLDNI), leader of UCSF-Alzheimer Disease 
Research Center (ADRC) imaging core, MPI of Longitudinal Evaluation of 
Familial Frontotemporal Dementia (LEFFTDS), and administrative 
director and Project 2 (imaging) leader of the Advancing Research and 
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Treatment for Frontotemporal Lobar Degeneration (ARTFL). Dr. Rosen 
will provide FTLDNI data, coordinate with Dr. Miller to provide the UCSF-
ADRC data, and coordinate LEFFTDS data access. He will also coordinate 
the proposed ARTFL add-on scanning efforts. 

 

Figure 1. Graphical representation of study design. UCSF and UBC will act as main collecting sites which 
will distribute data for analysis and processing amongst collaborators. USCF: University of California San 
Francisco; UBC: University of British Columbia; ADNI: Alzheimer’s Disease Neuroimaging Initiative; UCSF-
ADC: UCSF Alzheimer’s Disease Center; FTLDNI: Frontotemporal Lobar Degeneration Neuroimaging 
Initiative; LEFFTDS: Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects; ARTFL: 
Advancing Research and Treatment for Frontotemporal Lobar Degeneration; UBC-FTD: UBC Frontotemporal 
Dementia; USC-LONI: University of Southern California Laboratory of Neuro Imaging; SFU: Simon Fraser 
University; JHU: Johns Hopkins University; NUFSM: Northwestern University Feinberg School of Medicine. 

Dr. Mackenzie from University of British Columbia will coordinate 
transferring of the UBC-FTD data to Dr. Beg at Simon Fraser University. 

From Simon Frasier University, Dr. Faisal Beg has extensive experience 
in developing brain mapping algorithms and machine learning methods 
[25–28]. Drs. Wang and Beg have co-authored numerous peer-reviewed 
papers on neuroimaging biomarkers and machine learning methods for AD 
and FTD [25–27,29–42]. Dr. Beg will coordinate with the UBC team to perform 
image processing on the UBC-FTD dataset and send the computed data to Dr. 
Wang for machine learning analysis. Dr. Beg will continue to develop 
computational and classification methods for the proposed project. 

As leader of the LEFFTDS MRI quality control (QC) team, Dr. Kantarci 
will supervise the Mayo Clinic personnel to use LEFFTDS procedures to 
perform imaging QC of the proposed ARTFL-add-on scans, and to upload 
the MRI data to University of Southern California Laboratory of Neuro 
Imaging (LONI). 
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Dr. Toga, as leader of the LEFFTDS data archive team, will supervise the 
USC personnel on archiving the ARTFL-add-on scans and on making the 
data available to the study team. 

Dr. Younes from Johns Hopkins University has made significant 
contributions in the area of statistical modeling of longitudinal change 
associated with neurodegeneration [43–47]. Dr. Younes will assist with 
longitudinal analysis of neuroimaging data and on various statistical 
approaches to integrating data across different platforms. 

ADNI Data: ADNI data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. 
The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). 

Aims of the Grant 

Aim 1a. Use cross-sectional structural MRI to develop predictive 
biomarker models for differentiating bvFTD from AD and NC. We 
hypothesize that our machine learning approach can capture the spatial 
distribution patterns of structural features characteristic of different 
neuropathologies, and that they can be combined with clinical/cognitive 
features to distinguish between bvFTD and AD. Aim 1b. Include 
longitudinal structural imaging data to increase predictive power. 

Aim 2a. Use cross-sectional FDG-PET imaging to develop predictive 
biomarker models for differentiating bvFTD from AD and NC. We 
hypothesize that our machine learning approach can capture the spatial 
distribution patterns of FDG-PET features characteristic of different 
neuropathologies, and that they can be combined with clinical/cognitive 
features to distinguish between bvFTD and AD. Aim 2b. Include 
longitudinal FDG-PET imaging data to increase predictive power. 

Aim 3. Evaluate multimodal models that combine structural and FDG-
PET imaging and compare the predictive power of multimodal and 
unimodal models. We hypothesize that the multimodal model will have 
higher predictive power. 

STRUCTURAL MRI STUDIES ON ANTEMORTEM BIOMARKERS 

Background 

Significant progress has been made in the development of biomarkers 
for early detection of dementia. However, distinguishing between 
different types of underlying pathological disease states remains a 
challenge [19]. Due to neuropathological heterogeneity within clinical 
diagnoses, accurate antemortem diagnosis is difficult [20, 21]. In addition, 
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several neuropathologies, i.e., “mixed dementia” may exist in the same 
person, even in the same region of the brain. Identifying specific protein 
aggregates in an individual’s brain is currently done through postmortem 
autopsy. The success of any future treatments for neurodegenerative 
disorders will depend largely on the ability to achieve an early and 
accurate antemortem diagnosis.  

Computational analysis of antemortem structural magnetic resonance 
imaging (MRI) data provides a minimally invasive approach to identifying 
subtle changes in brain shape of living subjects [48]. Multiple studies have 
employed structural MRI in an attempt to classify dementia based on 
patterns of atrophy, but few can confirm their results with pathological 
evidence [49,50]. Therefore, it is of critical importance to utilize 
antemortem structural MRI in order to develop early and accurate 
biomarkers of postmortem disease. 

Additionally, due to the prevalence of “mixed dementia” and the 
heterogeneity seen in FTDs, studying population with specific genetic risks 
may elucidate differences between measurable effects of 
neuropathologies in the antemortem brain. Two groups of mutation 
carriers, GRN and C9orf27 have been identified in their importance with 
familial onset FTD, accounting for a significant portion of familial carriers. 
Both these groups show increased deposition of the transactive response 
DNA binding protein of 43 kDa (TDP-43): a key neuropathology within FTD. 
Therefore, studying patients who are known carriers, as well as non-
carriers, will allow for the study of the genetic influence on the deposition 
of neuropathology and the specific burden that TDP-43 places on the brain. 

Progress Report 

Study 1: Hippocampal subfield deformity patterns for subtyping non-
semantic primary progressive aphasia (PPA) 

Using methods developed by Dr. Wang and colleagues, FreeSurfer-
initiated Large-Deformation Diffeomorphic Metric Mapping (FSLDDMM) 
[31,38,40] hippocampal shape maps were created from structural MR in 37 
non-semantic PPA subjects, 15 individuals with early dementia of the 
Alzheimer type (aMCI/DAT), and 32 healthy controls. The goal of this 
project was to identify subgroups who cluster based on probable 
neuropathology. A two-step, semi-supervised statistical learning 
procedure was used to classify PPA participants into subgroups based on 
hippocampal shape measures and WMS-III memory performance. 
Hippocampal shape scores and WMS-III memory scores were entered into 
a logistic regression procedure to produce a model set of features. In the 
second, unsupervised step, we utilized k-means and hierarchical 
clustering on the model set on all PPA patients to discover subgroups. 
Stability of subgroup membership was evaluated with alternative 
classification methods: without training sets, with a training set of only 
DAT subjects, and using a single shape score. Finally, we compared the 
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resulting subgroups to determine relationships between memory and 
executive function. Two PPA subgroups (n = 24 and 13) were found, one 
presumed to carry AD neuropathology (PPA-ADN) and one representative 
of a mixture of non-AD neuropathologies including FTLD (PPA-NonADN). 
Subgroup membership was robust across alternative methods. The PPA-
ADN subgroup displayed common AD characteristics, including greater 
memory dysfunction and lower semantic fluency. PPA-NonADN showed 
characteristics commonly associated with non-AD neuropathology, 
including greater working memory dysfunction and the early 
preservation of memory. Further, hippocampal subfield atrophy in PPA-
ADN resembled aMCI/DAT patterns. These findings are consistent with our 
prior findings in patients with autopsy-confirmed PPA with AD 
neuropathology. This work was published in Alzheimer’s & Dementia [40]. 

Study 2: Rush University Alzheimer’s Disease Center antemortem 
hippocampal surface co-registration with postmortem neuropathology 

Center (RADC), we obtained ante-mortem T1-weighted structural MRI 
scans and quantitative post-mortem measures for β-amyloid, PHF tau 
tangles, and TDP-43 by immunohisto-chemistry from 42 subjects (mean 
age at imaging 87.6 years, mean imaging-death interval 2.7 years), and 
generated hippocampal surfaces using FSLDDMM [31,38,40]. We related 
the neuropathological measures to the vertex-wise hippocampal surface 
displacement measures (relative to a reference mean) using linear mixed-
effects model. Through a collaboration with the Rush University 
Alzheimer’s Disease.  

 

(A) β-amyloid (B) PHF tau  (C) TDP-43 

Figure 2. Visualization of the relationship between global immunohistochemical pathology burden 
and hippocampal surface deformity. Spatial distribution patterns for relating hippocampal surface 
deformities to immunohistochemistry: (A) β-amyloid, (B) PHF tau, (C) TDP-43. Bluish colors visualize 
negative associations between higher neuropathology with more inward surface deformity (i.e., localized 
volume loss). Left hippocampus is on the left side of the figure. Panels show results of univariate analysis. 
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Significant (FWER < 0.05, random field theory) [51,52] associations 
were visualized onto the surface vertices for localization. We found that 
higher measures of β-amyloid, PHF tau tangles, and TDP-43 inclusions 
were all related to increased inward surface deformity (i.e., local volume 
loss). Further, the neuropathologies were related to distinct spatial 
distribution patterns (Figure 2), and the patterns for the AD 
neuropathologies generally followed the CA1, subiculum subfields. This 
work was published in Neurobiology of Aging [53]. 

Study 3: Gray matter changes in asymptomatic C9orf72 and GRN mutation 
carriers  

Clinically asymptomatic subjects from families with C9orf72 mutation 
(15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72−) and GRN 
mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN−) 
underwent structural neuroimaging (MRI). Cortical thickness and 
subcortical gray matter volumes were calculated using FreeSurfer. Group 
differences were evaluated, correcting for age, sex and years to mean age 
of disease onset within the subject's family. The C9orf72+ group exhibited 
cortical thinning in the temporal, parietal, and frontal regions, as well as 
reduced volumes of bilateral thalamus and left caudate compared to the 
entire group of mutation non-carriers (NC: C9orf72− and GRN− combined). 
In contrast, the GRN+ group did not show any significant differences 
compared to NC. C9orf72 mutation carriers demonstrate a pattern of 
reduced gray matter on MRI prior to symptom onset compared to GRN 
mutation carriers. These findings suggest that the preclinical course of 
FTD differs depending on the genetic basis and that the choice of 
neuroimaging biomarkers for FTD may need to take into account the 
specific genes involved in causing the disease. This work was published in 
NeuroImage: Clinical [54]. 

Study 4: Sex differences within healthy subjects utilizing structural MR and 
APOE4 status from ADNI 

In the interest of improving predictive diagnosis, it is pressing that we 
have a more nuanced understanding of individual factors contributing to 
similarities and differences in brain structure across subjects [55]. To this 
aim, we set out to gain a more detailed picture of how the brains of males 
and females differ, given the known discrepancy in the prevalence of 
neurodegenerative disorders between the sexes [56]. To this aim, we 
examined differences in brain volumes for 742 cognitively normal healthy 
subjects in the ADNI and Australian Imaging Biomarkers and Lifestyle 
flagship study of aging (AIBL) databases. Additionally, we explored the 
effect of APOE4 gene status on brain volume differences in healthy 
subjects. Regression methods using general linear models (GLM) were 
used to remove the effect of various covariates on the structural volume 
to ensure an unbiased statistical evaluation. Controlling for the effect of 
age, intracranial volume, field strength, and scanner type, results showed 
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significant volume differences in cortical and subcortical structures 
including the bilateral amygdala and cerebellum (Figures 3 and 4).  

 

Figure 3. The figure above shows the cortical thickness map for a group difference between males and 
females. Cortical thickness has been analyzed for 738 subjects (ADNI and AIBL combined) and controlled 
for age, APOE4, intracranial volume (ICV), field strength, and scanner. The p-values have been corrected for 
multiple comparisons using random field theory. The figure demonstrates that males have a thinner cortex 
than females, as indicated by a negative t-statistic in blue. 

 

Figure 4. Rates of atrophy over two years. Males (blue) and females (red) in control and DAT group. For 
bilateral Caudate and amygdala, male brains showed greater atrophy in the control group, whereas females 
had greater atrophy in the DAT group. The t-statistic provided the extent of atrophy on both groups. 

All other brain structure volumes showed no significant differences 
between genders. Further, the existence of APOE4 gene does not alter the 
volume differences between healthy male and female subjects. Further 
longitudinal analyses revealed a greater decrease in volumes over time for 
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males in the healthy group, and greater decreases over time for females in 
the AD group. 

Planned Research 

Currently, results have been replicated from Study 2 on the original 42 
subjects and we plan to expand the sample to 129 subjects. Future research 
may include expanding to other subcortical regions such as amygdala and 
basal ganglia. Further, once a disease specific atlas is developed, we hope 
to compare this to other populations such as a sample from ADNI. There 
are currently 64 ADNI subjects who have undergone autopsy, and we plan 
to replicate methods from Study 2 in this population and compare the 
deformation atlases between the populations.   

Papers and Presentations  

• Christensen A, Alpert K, Rogalski E, Cobia D, Rao J, Beg MF, et al. 
Hippocampal subfield surface deformity in nonsemantic primary 
progressive aphasia. Alzheimers Dement (Amst). 2015;1(1):14-23 [40]. 

• Popuri K, Dowds E, Beg MF, Balachandar R, Bhalla M, Jacova C, et al. 
Gray matter changes in asymptomatic C9orf72 and GRN mutation 
carriers. Neuroimage Clin. 2018;18:591-598. doi: 
10.1016/j.nicl.2018.02.017 [54]. 

• Hanko V, Apple AC, Alpert KI, Warren KN, Schneider JA, Arfanakis K, 
et al. In vivo hippocampal subfield shape related to TDP-43, amyloid 
beta, and tau pathologies. Neurobiol Aging. 2019;74:171-181. doi: 
10.1016/j.neurobiolaging.2018.10.013 [53]. 

• Sangha O, Stocks J, Popuri K, Wang L, Beg MF. Longitudinal Sex 
Differences in Gray Matter Atrophy for Alzheimer’s Disease. Presented 
at the Alzheimer’s Association International Conference; 14–18 July 
2019; Los Angeles, CA, USA [57]. 

STUDIES ON MACHINE LEARNING  

Background 

Machine learning has been implemented in a variety of clinical 
research [58,59], including AD and FTD. In 2014, Li et al. [60] achieved  
74.8% classification accuracy in predicting AD conversion from MCI by 
using a hierarchical interaction model. Basaia et al. [61] implemented a 
deep Convolutional Neural Network and produced 74.9% accuracy. 
However, the previous research did not fully validate their results based 
on current machine learning standards of the field. Davatzikos et al. [62] 
used principle component analysis to select features from MRI scans and 
resulted in 84.3% classification accuracy in distinguishing AD from FTD. 
However, these studies involved small sample sizes and did not consider 
longitudinal trajectories. The large amount of neuroimaging data 
available through our multi-site consortia made it ideal for machine 
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learning approaches that could lead to accurate prediction of disease 
progression and distinction between AD and FTD. 

Progress Report 

Study 1: Assessing the goodness of harmonization for combining data from 
multiple sites 

When pooling datasets from large multicenter databases, the measured 
data are affected by multiple confounding covariates, which in turn 
increase the data variability, thereby hinder the ability of any machine-
learning-based classifiers to detect the actual effect of interest, such as 
changes due to the disease. Therefore, it is important to “harmonize” the 
data to remove the effect of various covariates. We have investigated 
efficient ways to evaluate the “goodness” of covariates harmonization. We 
analyzed multi-site, longitudinal MR image datasets acquired in different 
cohorts. We evaluated the distribution of brain structure volumes over 
these datasets before and after accounting for multiple covariates such as 
total intracranial volume, scanner field strength, sex, and age. Two 
techniques were used: (1) the empirical cumulative distribution function 
and (2) A panoramic visualization of the standard variation over the entire 
datasets–Zscape (Figure 5). This work was published in Human Brain 
Mapping [63]. 

 

Figure 5. Zscape shows a panoramic view of all the structures across the entire datasets. The top and 
bottom panels show the standardized variation before and after data harmonization for 4 different datasets: 
ADNI (7656 images) [64], AIBL (611 images) [65], NIFTD (839 images) [66], and Parkinson’s Progression 
Markers Initiative PPMI (1507 images) [67]. Data are first categorized into diagnosis groups, with the normal 
healthy group as the reference control group to calculate the Z-score. Each diagnostic group is then by 
gender, which are further divided into 3T and 1.5T subgroups. The color spectrum from red to blue shows 
the value of the Z-score decreased from +6 to −6, representing the level of volume shift from the mean of the 
reference control group. 
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Study 2: Novel classification system of AD 

We constructed novel stratification categorizing dementia of AD type 
(DAT) patients to 7 trajectories based on their initial and final diagnosis in 
the past. We again grouped them into two sets, DAT+, whose clinical status 
progressed to AD, and DAT−, whose clinical status did not progress to AD. 
Then we implemented an ensemble of probabilistic multiple-kernel 
learning classifiers for classifying DAT− and DAT+. The classifiers were 
trained on baseline images taken from 360 sNC (representing the DAT− 
class) and 238 sDAT (representing the DAT+ class) subjects. The classifiers 
were then tested on 110 uNC (unstable normal control), 58 pNC 
(progressive normal control), 232 eDAT (early DAT), 881 sMCI (stable MCI) 
and 486 pMCI (progressive MCI) images that included longitudinal imaging 
data. The overall classification accuracy was 78% by AUC. Subsequently, 
the supervised machine learning framework produced a continuous value 
between 0 and 1, termed as the FDG-PET DAT score (FPDS), indicating the 
probability of the subject's FDG-PET measure to be belonging to the DAT 
trajectory, i.e., how likely is the subject to be clinically diagnosed with DAT 
(Figure 6). Furthermore, we tested our model in predicting AD conversion 
in 2, 3, and 5 years and obtained 81%, 80%, and 77% classification AUC. 
With this result, we were able to confirm that our model produced a 
reliable biomarker that can distinguish patients who are progressive to AD 
and who are not. This work was published in NeuroImage: Clinical [68]. 

 

Figure 6. Distribution and classification power of FDG-PET DAT score (FPDS) as a biomarker. FPDS can 
successfully classify a multiple AD trajectories. For example, eDAT and pMCI patients tend to have a higher 
FPDS score while the rest of patients have a lower score. Its AUC classification resulted in 77.64%. 
uNC = Unstable normal control; pNC = Progressive normal control; eDAT = Early DAT; sMCI = Stable MCI; 
pMCI = Progressive MCI. 

Study 3: Predicting conversion to AD from MCI  

The third project proposed to predict conversion from MCI or NC to AD. 
We implemented a novel deep learning method, the Residual Network, in 
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classifying patients who would progress to AD (pMCI) in at most 3 years 
and who would stay in MCI (sMCI) for at least 3 years. We firstly conducted 
a source task which classified NC vs AD with more than 2500 MRI scans 
from ADNI and obtained 97% classification accuracy within an 
independent test set. Then we transferred this domain knowledge in 
classifying sMCI vs pMCI and obtained 81% classification accuracy, which 
is the state-of-the-art performance. With this study, we were able to 
improve the performance of an AD conversion predicting model and 
revisited its potential in clinical practice. Figure 7 shows results from our 
deep learning performance on source task transfer learning. 

 

Figure 7. Performance of Residual Network 29. (A) Classifying AD from NC as a source task. (B) Transfer 
learning model on classifying sMCI from pMCI.  

Study 4: Multiclass modeling of FTD subtypes using Relevance Vector 
Machine 

This last project aimed to build a multi-classification model classifying 
5 FTD subtypes and AD, which are clinically similar enough to be 
misdiagnosed. We used 821 subjects’ MRI scans in total and implemented 
Relevance Vector Machine (RVM) as a classification method. The result 
was successful as the confusion matrix in Table 1 presents. We fully 
validated our results by using 5-fold inner cross validation and 3-fold outer 
cross validation.  

Furthermore, we also implemented RVM in predicting AD pathology in 
a cohort of subjects diagnosed with PPA. Based on whole brain and regions 
of interest as a training resource, it resulted in 98% classification accuracy 
utilizing gray and white matter scans as inputs. With these results, we 
confirmed the potential application of computer-aided diagnosis system. 
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Table 1. Classification Results from RVM. 

 Classification Prediction per group 
 AD BV CN nfPPA PSP svPPA N TPR 
AD 143 20 14 6 7 6 196 0.91 
BV 6 42 9 2 5 1 65 0.73 
CN 28 5 311 20 47 1 412 0.65 
nfPPA 8 8 6 15 6 1 44 0.75 
PSP 3 4 8 1 42 0 58 0.34 
svPPA 2 2 0 0 0 42 46 0.72 

AD = Alzheimer’s Dementia; BV = Behavioral Variant of Frontotemporal Dementia; nfPPA = Non-fluent Primary 

Progressive Aphasia; PSP = Progressive Supranuclear Palsy; svPPA = Semantic variant Primary Progressive Aphasia; 

TPR = True Positive Rate. Results show the predicted classification for each group with the diagonal indicating a 

correct classification.  

Planned Research 

In future work, we will further augment the data from updated ADNI 
and LEFFTDS data storage and improve our models’ performance. Also, 
previous machine learning methods lack interpretability as they cannot 
validate the features that were recognized by models during the training 
process. Therefore, we plan to provide a reasonable explanation of our 
prediction accuracy by implementing a gradient Class Activation Map 
which can visualize the features of our model. Such a study will use the 
weight metrics from the machine learning algorithms to identify which 
areas of the brain are more important in the classification of disease type. 
Using this, we will be able to identify regions of interest that may have not 
been previously identified or may also provide crucial confirmation of 
significant brain regions within FTDs.  

Papers and Presentations  

• Popuri K, Balachandar R, Alpert K, Lu D, Bhalla M, Mackenzie IR, et al. 
Development and validation of a novel dementia of Alzheimer’s type 
(DAT) score based on metabolism FDG-PET imaging. NeuroImage Clin. 
2018;18:802-13 [68]. 

• Ma D, Popuri K, Bhalla M, Sangha O, Lu D, Cao J, et al. Quantitative 
assessment of field strength, total intracranial volume, sex, and age 
effects on the goodness of harmonization for volumetric analysis on 
the ADNI database. Hum Brain Mapp. 2019;40(5):1507-1527. doi: 
10.1002/hbm.24463 [63]. 

• Bae J, Heywood A, Stocks J, Jung Y, Popuri K, Beg M, et al. End-to-end 
3D-Convolutional Neural Network for Predicting Conversion from 
Mild Cognitive Impairment (MCI) to Alzheimer’s Dementia (AD). 
Presented at the Alzheimer’s Association International Conference; 
14–18 July 2019; Los Angeles, CA, USA [69]. 
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• Bae J, Heywood A, Stocks J, Jung Y, Popuri K, Beg M, et al. End-to-end 
3D-Convolutional Neural Network, Presented at the Society for 
Neuroscience Conference; 19-23 October 2019; Chicago, IL, USA [70]. 

STUDIES ON FDG-PET AND MULTIMODAL/LONGITUDINAL ANALYSIS 

Background 

In Aim 2a/b, we aspired to use cross-sectional and longitudinal FDG-PET 
imaging to develop predictive biomarker models for differentiating bvFTD 
from AD and NC. There is an increasing clinical use of functional imaging 
biomarkers for the differential diagnosis of early-stage of 
neurodegenerative disease. In the research diagnostic criteria proposed 
by the International Working Group [71] and in the recommendations of 
the National Institute on Aging–Alzheimer’s Association (NIA-AA) [72–74], 
biomarkers are defined as an expression of pathophysiological aspects of 
disease, and are indicated for use to increase confidence in the diagnosis. 
Furthermore, these biomarkers are increasingly used in clinical trials for 
subject selection and stratification, safety and proof-of-concept 
assessments, and monitoring of treatment effects [75,76].  
18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), which 
reflects glucose metabolism mainly from neurons [77], has been 
extensively evaluated in the frame of early-stage neurodegeneration, 
showing good accuracy in identifying patients who later convert to AD 
dementia [78–81]. Additionally, FDG-PET has been approved by the US 
Medicare health insurance program for diagnosis of FTD, and has been 
shown to increase diagnostic accuracy beyond that of clinical features 
alone when differentiating between FTD and AD [82]. 

Progress Report 

Study 1: Using FDG-PET to identify antemortem biomarkers of progression 
to AD  

To hone the predictive validity of FDG-PET within AD patients alone, 
we employed multi-state Markov transition models, as well as multi-level 
models on three classes of patients: NC, MCI, and AD. This work was 
completed in the interest of developing more sensitive ante-mortem 
biomarkers for progression of MCI to AD-Dementia. More precise 
delineation of the areas particularly sensitive to neurodegeneration 
caused by AD allow our diagnostic tools more accuracy for distinguishing 
AD from other neurodegenerative diseases, including FTD. Multi-state 
modeling is a state-transition modeling approach based on Markov 
processes whereby individual patient-level data is used to build survival 
regression models for estimating rates of transition between stages of 
disease. To this aim, we utilized FDG-PET data available from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Specifically, we used 
standardized uptake value ratio (SUVR) features calculated from 147 
patches from baseline to 96 months to predict transition probability from 
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one state to another over time. The developed models were able to 
consistently identify several brain regions as significant predictors of 
conversion. Significant predictors in the model include right hippocampus 
(p < 0.001), left entorhinal cortex (p = 0.008), left isthmus of cingulate gyrus 
(p = 0.011), left precuneus (p = 0.058), and right medial temporal lobe 
(p = 0.028). Additionally, independent of FDG-PET, Apoe-4 status remained 
a significant predictor in the model (p = 0.017). The presented models 
identify key features in the prediction of progression from MCI to AD, and 
extend to show significant predictive ability of deficiencies in brain 
glucose metabolism. Future work in this domain will employ similar state-
of-the-art transitional models to address the discrepancy in transition 
across additional variants of neurodegenerative diseases, including FTD. 

Study 2: Multimodal comparison of neurodegeneration using ADNI FDG-
PET to identify differences within AD and MCI 

Neurodegeneration caused by pathological protein aggregation in AD 
and FTD is at least partly reflected in both gray matter cortical atrophy and 
glucose hypometabolism. In Aim 3 of the grant, we proposed to evaluate 
multimodal models that combine structural and FDG-PET imaging and 
compare the predictive power of multimodal to unimodal models. It has 
been suggested that abnormalities on FDG-PET may occur before 
structural changes in the brain in AD [83,84]. More specifically, 
comparison of structural and metabolic reductions show that atrophy 
begins in the medial temporal lobes, whereas metabolic changes occur in 
the posterior cingulate gyri and parietal lobule [85]. To date, researchers 
do not understand why neurodegeneration is reflected in disparate spatial 
and temporal patterns between structural and functional imaging 
modalities, nor the relationship of these variations to clinical presentation 
or demographics. To this aim, we investigated the relationship between 
brain structure and function and whether concordance between metrics 
varies by clinical presentation. We used structural and functional brain 
images from ADNI, and computed W-score maps that adjusts for the effect 
of normal aging. Pearson correlations were computed per individual 
across 68 Freesurfer-ROIs [86] of atrophy and hypometabolism, reflecting 
individual consistency in the degree of atrophy and hypometabolism 
across the entire brain. To investigate the discriminatory power of our 
multimodal data and compare to unimodal approaches, logistic regression 
assessed whether a whole-brain correlation score is predicative of later 
conversion to DAT, and whether this effect was greater than any imaging 
modality alone. For this analysis, 132 progressive MCI patients with a 
structural and functional scan at a time point 12 months before conversion 
to DAT were compared to a representative sample of 132 stable 
MCI patients.  
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Figure 8. Whole-Brain Individual Correlations by Time & Diagnosis. sNC (stable normal control), sMCI 
(stable Mild Cognitive Impairment), pMCI (progressive Mild Cognitive Impairment), sDAT (stable dementia 
of Alzheimer’s type). 

Results of the logistic regression indicated that there was a significant 
effect of correlation score and APOE4-status on conversion probability. 
Further, we found that individuals at more severe disease stages had much 
higher degrees of whole-brain consistency in degree of atrophy and 
hypometabolism (Figure 8). 

Study 3: deep-neural-network-based Alzheimer’s Dementia score using 3D 
FDG-PET image only, as well as associated MRI 

Finally, the AD-related functional and structural pathological changes 
are a continuous, progressive process. To achieve early diagnosis of AD 
using FDG-PET, it is important to predict such continuum directly from the 
patterns of metabolism alterations extracted from the correlated FDG-PET 
brain images. Firstly, we constructed a 3D convolutional neural network 
with residual connections that translate the FDG-PET images into a single 
probability score to represent the AD pathology continuum. The model 
weights of this network were firstly trained on subjects that are 
longitudinally stably diagnosed as normal control and DAT, achieving AUC 
of 0.976 with five-folds cross-validation. Testing of the training results on 
an independent test set showed AUC of 0.881 to predict the conversion of 
MCI to DAT within 3 years of conversion time. Our method also produced 
saliency and class activation maps localizing DAT-affected brain regions 
that are responsible for distinguishing converters from non-converters. 

Furthermore, we also investigated a multi-scale, multi-modal deep 
neural network to learn the AD-pathology-induced metabolism pattern 
alterations. Similar to the approach in the previous study, we also 
performed comprehensive validation on FDG-PET data taken from 1051 
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subjects, demonstrating great generalization capability. Our results 
showed that the ensemble of multiple classifiers improved the stability 
and robustness of the classification performance. This work was published 
in Medical Image Analysis [87]. 

Planned Research 

Future work in this domain will examine whether region-specific 
correlations may offer even greater discriminatory power and allow for 
the discovery of inter-modality topographic discrepancies that can shed 
light on spatial or temporal discordance observed between imaging 
modalities in AD. Continued research will examine regional correlations 
between cortical atrophy and glucose hypometabolism which can serve as 
a biomarker for disease severity, and be used to predict conversion to DAT 
in MCI subjects. Further, the early and accurate diagnosis of Alzheimer’s 
disease is impeded by the high volume of MCI patients who present with 
atypical or non‐amnestic neuropsychological profiles [88]. Research 
examining disease progression in MCI must be equipped to explain or 
account for heterogeneity in clinical or cognitive presentation. In MCI, 
differing cognitive profiles are multi-determined, but may reflect differing 
pathological processes that can be more clearly elucidated with multi-
modal approaches. Additional research under Aim 3 will examine distinct 
cognitive trajectories of MCI using the multi-modal integration techniques. 
Finally, current research examining functional and structural alterations 
in FTD have largely done so separately, lacking the ability to explore the 
relationships between these changes. In particular, functional alterations 
concordant or discordant to structural changes or vice versa might 
provide valuable information for accurate diagnosis and staging of the 
FTD. Further research under Aim 3 will assess the multimodal integration 
and correlation among FTD subjects, and how that might offer greater 
discriminatory power between AD and FTD. 

Papers and Presentations 

• Zhang F, Niu X, Heywood A, Stocks J, Beg MF, Wang L. Using Multi-state 
Markov Transition Models and Multilevel Models to Identify 
Biomarkers of AD using ADNI FDG-PET data. Presented at the 
Alzheimer’s Association International Conference; 14–18 July 2019; 
Los Angeles, CA, USA [89]. 

• Stocks J, Bae J., Sangha O, Popuri K, Beg MF, Wang L. The Relationship 
between Cortical Neurodegeneration and FDG-PET Hypometabolism 
as a Disease Marker Across Stages of Alzheimer’s Dementia. Presented 
at the Alzheimer’s Association International Conference; 14–18 July 
2019; Los Angeles, CA, USA [90]. 

• Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Alzheimer’s Disease 
Neuroimaging Initiative. Multiscale deep neural network based 
analysis of FDG-PET images for the early diagnosis of Alzheimer’s 
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disease. Med Image Anal. 2018;46:26-34. doi: 
10.1016/j.media.2018.02.002 [87]. 

DISCUSSION 

We have presented a multitude of research projects both completed 
and in progress that are a product of the highly collaborative, multi-site, 
multi-study project presented here. Recent advances in imaging, pathology, 
and genetics have improved our understanding of FTD. Despite these 
advances, sensitive and specific biomarkers that can be used to facilitate 
an antemortem diagnosis remain elusive. Two decades of clinical trials of 
dementia patients have failed to produce effective disease-modifying 
drugs [91], and inaccurate antemortem diagnosis has been implicated as a 
key contributing factor. As potential disease-modifying treatments are 
being developed, sensitive and specific biomarkers will be needed, so that 
they can be used to identify the most appropriate patient populations. In 
this project, we are addressing the unmet need for antemortem 
biomarkers that can identify patients with specific neuropathologies, so 
that future disease-altering drugs can be tested with more success. 
Therefore, it is crucial to continue to advance the field utilizing multi-
modal systems for research strategies.  

The advent of large-scale consortia databases such as ADNI combined 
with rapid technical advancements in machine learning and statistical 
modeling, have significantly advanced the development of neuroimaging 
biomarkers for AD and related dementias. Because of such possibilities, 
we presented several studies on structural MRI, FDG-PET, and machine 
learning. With the development of methodologies to map surface 
deformation of subcortical structures, we were able to visualize and 
quantify areas of the hippocampus that are unique to underlying 
neuropathology. Our studies on FDG-PET revealed key features in the 
progression of disease. And through state-of-the-art machine learning 
algorithms, we can accurately classify and predict the progression 
of disease.  

The research presented here provides crucial information on our 
understanding of disease. This work is critical in numerous ways. The 
accurate diagnosis of disease is the first step in providing the best 
treatments possible to affected individuals. Further, the accurate 
prediction of disease progression is an invaluable tool in patient care. In 
its third year, this project has already contributed greatly to body of 
literature within FTD and AD. However, research in progress to be 
completed in the final year of the grant stand to enhance the literature 
even further.  

CONCLUSIONS 

We report on the multi-site, multi-study collaboration project 
“PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and 
Differential Diagnosis,” describing completed and future work supported 
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by this grant. This project has completed a number of projects, focusing on 
(1) structural MRI; (2) machine learning; and (3) FDG-PET and multimodal 
imaging. Studies utilizing structural MRI have identified key features of 
underlying pathology by studying hippocampal deformation that is 
unique to clinical diagnosis and also post-mortem confirmed 
neuropathology. Several machine learning experiments have shown high 
classification accuracy in the prediction of disease based on Convolutional 
Neural Networks utilizing MRI images as input. In addition, we have also 
achieved high accuracy in predicting conversion to DAT up to five years in 
the future. Further we evaluated multimodal models that combine 
structural and FDG-PET imaging, in order to compare the predictive power 
of multimodal to unimodal models. Studies utilizing FDG-PET have shown 
significant predictive ability in the prediction and progression of disease.  
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