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ABSTRACT 

Diseases are among the most important limiting factors for wheat 
production. Breeding for fungal diseases of wheat, primarily for rusts and 
Fusarium head blight (FHB), are major resource consuming activities in 
most breeding programs which prevent breeders from focusing entirely 
on improving yield. Breeding for these diseases is challenging because 
resistance is inherited mostly in a quantitative fashion and is greatly 
influenced by weather conditions. Recent advances in genomics, 
phenomics and big-data analysis provide opportunities for accelerating 
the development of low-cost and efficient selection methods for such 
complex traits. Genomic selection (GS) may provide opportunities for 
reducing the time and cost of making selections. By appropriately 
integrating GS in the breeding workflow, it is possible to select new 
parents purely based on genomic estimated breeding values before 
breeding materials are entered into nurseries and field trials. Due 
to reduced selection cycle time, annual genetic gain for GS is predicted to 
be two to threefold greater than for a conventional phenotypic selection 
program. In this paper, we review the recent GS studies focusing on the 
prediction of resistance to rusts and FHB including those that benefits 
from modeling multiple phenological traits correlated with the resistance. 
In addition, we discuss the potential of integrating phenomics and 
machine learning for evaluating plant disease and the integration of 
multiple “omics” data in genomic prediction to improve the applicability 
of GS for disease resistance breeding in wheat. 
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INTRODUCTION 

There is a growing need to invest in crop improvement to ensure food 
security for the future, which is challenged by an ever-increasing global 
population, climate change, extreme weather phenomena and the 
unsustainable use of natural resources. Based on the United Nations 
projection, the global human population would be 9.7 billion by 2050, 10.8 
billion by 2080, and 11.2 billion by 2100 [1]. Plant breeders and scientists 
are under pressure to improve crops to be higher yielding, more 
nutritious, pest- and disease-resistant and climate-smart [2]. A shift in 
global temperatures and other climatic conditions will results in various 
changes in wheat diseases, including pathogen populations, which will 
mean that breeders will need to continuously adapt crops to combat these 
diseases [3]. 

Wheat is one of the most important cereals in the world and plays a 
vital role in addressing food security [4]. Diseases are among the most 
important limiting factors that affect wheat production. There are a 
number of wheat diseases and insects that cause significant crop loss and 
result in an increased input costs for farmers. Three rust pathogens: 
Puccinia triticina (leaf rust), Puccinia striiformis f. sp. tritici (stripe rust), 
and Puccinia graminis f. sp. tritici (stem rust) are among the most 
damaging pathogens and have caused massive losses to wheat production 
in some areas [5–11]. Each of these pathogens can cause yield losses of up 
to 50% or more during severe epidemics and when environmental 
conditions are favorable [12,13]. Fusarium spp. that cause Fusarium head 
blight (FHB) in wheat are also challenging pathogens for wheat 
production, as they penalize both grain yield and quality, and contaminate 
grains with mycotoxins such as trichothecene deoxynivalenol (DON) [14].  

Importance of Rust and FHB Resistance  

Improving disease resistance in wheat is very important as it also 
improves yield, quality and even some agronomic traits. Rust pathogens 
have hindered global wheat production since the domestication of the 
crop and continue to threaten the world’s wheat supply [15]. Leaf rust is a 
problematic disease because the pathogen displays high diversity; there is 
a constant emergence of new races and the pathogen exhibits high 
adaptability to a wide range of climates [9,16,17]. Similarly, in recent 
years, stem rust has re-emerged as a concern as new physiological races 
have evolved in Puccinia graminis f. sp. tritici population, demonstrating 
the vulnerability of broadly grown wheat cultivars with limited number 
of major rust resistance genes across the globe [18–20]. Stem rust has the 
capacity to destroy millions of hectares of healthy, high-yielding wheat in 
less than a month by reducing fields to a mass of bare, broken stalks 
supporting only small, shriveled grains by harvest time [21]. In addition, 
fungicide treatment against stem rust is very hard to apply because it 
would require farmers to drive through their fields after flowering has 
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occurred with potential damage to their yields. Stripe rust, also known as 
yellow rust, occurs around the world in environments where growing-
season conditions are humid and cool or at high altitude areas with warm 
day and cooler night temperatures [5]. However, strains of stripe rust have 
recently developed with a broader range of temperature adaptation [22]. 
The pathogen is highly variable, affecting the durability of resistance. 

Breeding resistant cultivars is an important component of an 
integrated FHB management strategy. Resistance to FHB is quantitative, 
requiring a quantitative approach for evaluation and analysis. Genetic 
studies conducted over the last decade have identified over 500 FHB 
resistance QTL on all wheat chromosomes [23–25]. Fhb1, on chromosome 
3B is the most consistently reported QTL for FHB resistance breeding from 
Chinese wheat cultivar Sumai 3. The resistance genes within the Fnb1 have 
been cloned [26,27]. Fhb1 has provided by far the strongest level of disease 
severity reduction ranging between 20% and 25% [28]. Low frequency of 
resistance alleles in elite wheat breeding parents and concerns about the 
detrimental effect of linkage drag has limited the utilization of Fhb1 in 
breeding programs [29,30]. Recently another FHB resistance gene 
transferred from Thinopyrum to wheat, Fhb7, has been cloned and its 
resistance mechanisms has been characterized [27]. Fhb7 resistance 
differs from Fhb1 resistance, which depends on a reduction of pathogen 
growth in spikes, although both confer durable resistance [27]. The ability 
of Fhb7 to detoxify multiple mycotoxins produced by various Fusarium 
species demonstrates its potential as a source of resistance to the various 
diseases for which Fusarium trichothecenes are virulence factors [27]. A 
previous study proposed an additive effect of FHB resistance QTL [31], 
implicating the feasibility of improving FHB resistance by combining 
minor effect QTL. Phenotyping over multiple environments is routinely 
conducted to identify superior FHB resistant germplasm. Phenotypic 
selection has been successful in spite of interactions between FHB 
resistance loci and the environment, and the unfavorable association of 
FHB resistance with agronomic traits such as plant height (PH) and 
maturity [32–35].  

Selection for Resistance to Rust and FHB 

Selection for resistance to rust and FHB in wheat is resource 
demanding and diverts breeding resources away from other priority 
traits, including yield. Each breeder needs to make the strategic decision 
of which disease resistance to target, keeping in mind that each additional 
trait will ultimately reduce the selection intensity (i.e., the chances of 
success) for other traits, when assuming fixed population size or limited 
budget [36]. Currently, phenotyping rusts and FHB requires observation of 
visible symptoms and screening of hundreds or thousands of lines to 
identify resistant plants, which is a costly and labor intensive process. The 
time constraints are also prohibitive if the window of opportunity for 
phenotyping is narrow. Moreover, conventional phenotyping approaches 
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tend to have high experimental errors due to inaccurate or subjective 
visual assessments.  

Rusts and FHB are challenging diseases to improve because resistance 
is inherited in a quantitative fashion and is greatly influenced by 
environmental conditions. Current advances in genomics and 
bioinformatics provide opportunities for accelerating the development 
of efficient and low-cost genomic selection methods for such complex 
traits [37–39]. In addition, developing high-throuput phenotyping 
techniques combined with the power of machine learning (ML) would 
improve the efficiency of disease assessment in field and is integral to the 
sucess of GS. 

Genomic Selection 

Genomic selection has been considered one of the key post-
1990 technologies utilized in plant improvement, along with transgenic 
cultivars, QTL mapping, association mapping, phenomics, envirotyping, 
genome editing, sequencing, and doubled haploid production [40,41]. In 
GS, a training population is genotyped with genome-wide markers 
and phenotyped for the trait under selection. GS models are then trained 
with the marker and phenotype data, and the model is used to predict the 
breeding value of new set of individuals (selection candidates) that have 
been genotyped but have not been phenotyped. Unlike traditional marke
r assisted selection (MAS), which uses a small number of markers 
associated with major QTL, GS uses genome-wide markers with 
phenotyping data to calculate (GEBVs) in one population that will predict 
the performance of lines in another population only using markers [42]. 
This avoids multiple testing and the need to identify marker-trait 
associations based on an arbitrarily chosen significance threshold. Studies 
indicate that GS outperforms traditional marker-assisted selection for 
complex traits controlled by many minor effect QTL with low heritability 
[43–47]. If adequately integrated into the breeding workflow GS can 
partially replace field testing and therefore reduces line development time 
[46].  

Genomic selection has been well established in the field of animal 
breeding, but many plant breeding programs worldwide are still 
evaluating the optimal strategy and stage for implementation in a 
breeding program. Wheat breeding programs typically require 10–15 
years to transfer novel genes into elite germplasm. By application of GS, it 
is possible to select new parents purely based on GEBV before being 
entered in field trials and nurseries [48–50]. Because of reduced selection 
cycle time, annual genetic gain for GS is predicted to be two to threefold 
greater than for a conventional phenotypic selection program [46,51–58]. 
However, there is still limited information on the application of GS for 
improving disease resistance in wheat.  

The earliest review by Rutkoski et al. [59] addressed the 
implementation of GS for adult plant stem rust resistance in wheat and 
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later Poland and Rutkoski [60] reviewed GS studies for diseases resistance 
published until 2015. Thus, in this review, we discuss the recent methods 
and studies reported between 2016 and 2020 about (a) GS for resistance to 
rusts and FHB, (b) GS for multiple correlated traits, which may be useful 
for breeding for disease resistance, (c) the application of phenomics and 
ML to evaluate plant disease, and (d) advances in genotyping and the 
application of other “omics” technologies in GS to predict disease 
resistance in wheat. 

GENOMIC SELECTION FOR DISEASE RESISTANCE  

Resistance to wheat rusts generally falls into two categories: (i) all stage 
resistance, which is often conferred by race-specific resistance genes (R 
genes) involved in pathogen recognition and associated with a 
hypersensitive response, and (ii) slow rusting adult plant resistance (APR), 
which is quantitative resistance often conferred by multiple loci, and is 
not associated with a hypersensitive response. R genes protect the plant 
from seedling to adult growth stages whereas APR genes function mainly 
at the adult stage [61]. Quantitative disease resistance is more durable than 
qualitative resistance conferred by R genes [59,62,63]. Phenotyping APR in 
large populations is expensive and labor intensive, as it requires 
conducting both seedling and adult plant screening. Resistance to FHB in 
wheat is inherited quantitatively and strongly influenced by the 
environment [23]. In general, breeding for quantitative disease resistance 
is a challenge because of the low heritability and high genotype × 
environment interaction, emphasizing the importance of devising 
strategies for more effective evaluation and exploitation of this resistance 
[64].  

Marker assisted selection is useful for major effect QTL, but for FHB 
and rust resistance the individual QTL often have small effects. 
Additionally, only a few monogenic rust resistances are durable and only 
a few rust and FHB QTL with large effects have been successfully 
transferred into elite breeding material [36]. Further constraints like lack 
of diagnostic markers and the prevalence of QTL–background effects 
hinder the broad implementation of MAS [36]. GS is a promising approach 
that can potentially accelerate breeding for quantitative resistance by 
providing accurate predictions of resistance levels, reducing time to 
parental selection and increasing genetic gain from selection. GS will also 
open new avenues for molecular based resistance breeding by capturing 
more of the variation due to small effect QTL [39,58,65]. This makes GS 
well suited for rust and FHB resistance breeding. To achieve even greater 
gains, multiple traits can be simultaneously targeted for GS [2] including 
morphological traits correlated with disease resistance. Selection 
strategies which combine disease resistance with other traits offer 
efficient use of resources by assaying multiple traits on the same set of 
plants.  

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 6 of 29 

Strategies for Improving GS Prediction Accuracy 

Several different strategies have been tested and reported to increase 
GS prediction accuracies. Some of them are: combining pedigrees and 
markers [66], applying GS models that account for interactions between 
genotype and environment [67], incorporating additional secondary traits 
[56], and incorporating additional genomic and/or biological information, 
such as that revealed in a genome wide association study (GWAS), into the 
GS model [68], termed GS + de novo GWAS. Combining pedigree with 
markers for prediction has been shown to improve accuracy compared to 
prediction based on either pedigree or the markers alone. Juliana et al. [64] 
found that combining marker and pedigree-based relationship matrices 
lead to the highest GS accuracies for APR for all three rusts of wheat. In the 
GS + de novo GWAS approach, significant markers identified by GWAS 
were included as fixed effects in the GS model and removed from the 
matrix of random effects. Besides enhancing prediction accuracy, GS + 
GWAS does not require additional data because the same phenotypic and 
genotypic data set is used, and it can be more accessible to breeders as it 
does not require extensive knowledge of the underlying genetics of a trait 
of interest [68]. The benefits of integrating GWAS with GS to further 
improve the accuracy of GS in wheat are confirmed for rusts [69,70], 
Septoria tritici blotch [71,72], and yield [73]. Particularly, Daetwyler et al. 
[69] and Rutkoski et al. [70] demonstrated the advantage of including 
markers linked to large to moderate effect genes or loci previously found 
to affect the traits of interest. On the other hand, according to Arruda et al. 
[74], treating random SNPs as fixed effects, reduced prediction accuracy.  

Another strategy is the application of GS on landraces stored in 
genebanks to obtain GEBVs for economically important traits by training 
models on a subset of phenotyped landraces [75]. Muleta et al. [76] have 
also shown the feasibility of this approach by using empirical data 
collected for adult plant resistance to stripe rust from 1163 spring wheat 
accessions and suggested that genomic prediction can provide a promising 
global strategy for mining useful alleles from crop germplasm collections. 
In addition, the results of this study showed promising prediction 
accuracies for potential use in germplasm enhancement and rapid 
introgression of exotic germplasm into elite materials. The application of 
GS for selected bulk and recurrent selection methods and backcrossing as 
possible breeding schemes to enhance rust resistance of wheat is well 
explained [59]. Despite the availability of a large number of wheat wild 
relatives and landraces in genebanks, their utilization has been impeded 
largely due to limited phenotyping data. GS can significantly contribute to 
mobilizing the genetic variation within the non-adapted germplasm 
through accurate predicting of FHB and rust resistance phenotype. 

As durable resistance needs the effective combinations of major and 
minor genes [77,78], the integration of MAS and GS for selection of both is 
reasonable for enhancing disease resistance germplasm. Cerrudo et al. 
[44] proposed the use of QTL based MAS for forward breeding to enrich 
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the allelic frequency of traits with large additive effect QTL in early 
selection cycles, while GS could be used in more advanced breeding cycles 
to capture additional alleles with smaller additive effects. Extensive 
deployment of large-effect rust resistance genes/QTL in resistant cultivars 
imposes strong selection pressure [79], on the pathogen population which 
can lead to pathogen virulence shifts or mutations [80]. Enhancing 
quantitative rust resistance in wheat using GS is hence highly desired. 

Genomic Selection for Rust Resistance in Wheat  

The potential for increased genetic gain for rust resistance in wheat 
through GS has been recognized [56,64,69,70,76,78,81]. There is still 
limited information on the application of GS to exploit disease resistance 
from exotic or uncharacterized germplasm from gene banks, however, 
most GS studies have been based on bi-parental and multi-family breeding 
populations.  

Among the few studies that have shown the feasibility of GS to predict 
rust resistance in wheat, Juliana et al. [64] achieved mean genomic 
prediction accuracies ranging from 0.12–0.56 for leaf rust (LR), 0.31–0.65 
for stem rust (SR), and 0.34–0.71 for stripe rust (YR). They examined adult 
plant resistance in a population of 333 and 314 advanced lines from the 
Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) wheat 
breeding program. Their results indicated that using genome-wide 
marker-based models resulted in an average of a 42% increase in accuracy 
over the least-squares approach, which involves an initial marker ranking 
and selection step. This indicated that GS was a promising approach for 
improvement of quantitative rust resistance in the breeding pipeline.  

Using a set of 365 advanced CIMMYT wheat data for quantitative APR 
to SR, Rutkoski et al. [81] indicate how historical data could be used to 
successfully initiate a GS program for resistance breeding. They used a 
second population of 503 new selection candidates (SCs) which was 
generated by two rounds of random mating between 14 founder lines 
from the historical population, followed by one round of selfing for seed 
increase. They have evaluated these individuals for quantitative APR to 
stem rust and genotyped using genotyping-by-sequencing approaches and 
analyzed using GBLUP. A training population taken from SCs and formed 
from historical population was compared by taking a subset of lines from 
SCs as a validation population. Their results showed that lower accuracy 
was obtained when retaining historical data especially when the 
heritability of the historical data was low, the heritability of the close 
relative training data was high, and the observations were not weighted 
properly according to heritability. This has implications for prediction 
model updating. In a selection program, it may be better to discard 
historical data and simply use the most recent data for model training. 
However, when to discard training data will need to be determined 
empirically because it will depend on the selection intensity of the 
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breeding program, the availability of data on close relatives, and quality 
of the historical data [81].  

Muleta et al. [76] used empirical data for APR to YR collected on 1163 
spring wheat accessions and genotypic data based on the wheat 9K Single 
nucleotide polymorphism (SNP) iSelect assay to estimate GEBVs for stripe 
rust resistance under scenarios of different population sizes, degrees of 
genetic relatedness within a population, and marker densities from multi-
environment field trials. According to their results, larger germplasm 
collections may be efficiently sampled via lower-density genotyping 
methods, whereas genetic relationships between the training and 
validation populations remain critical when exploiting GS to select for 
resistance to YR from germplasm collections. In addition, this study revealed 
that GS could provide an efficient and cost-effective sampling strategy of 
unlocking the potential of wheat genetic resources and accelerating the 
rate of genetic gain in wheat breeding programs. Examples of GS studies 
reported for SR, YR and LR resistance in wheat after 2015 including 
information on the training and test population, the GS models used, and 
the accuracy of the prediction is presented in Table 1.  

Table 1. Examples of GS studies of rust resistance in wheat. 

1 Stem rust; 2 yellow rust; 3 leaf rust; 4 infection type; 5 adult plant resistance; 6 genomic best linear unbiased prediction; 7 ridge regression 

best linear unbiased prediction; 8 reproducing kernel Hilbert spaces with marker and pedigree relationship matrices; 9 GBLUP 

with selected loci as fixed effects. 

Genomic Selection for FHB Resistance in Wheat 

Phenotyping for FHB is laborious and expensive, requiring the 
preparation of large amounts of inoculum and establishing mist irrigation 

Plant materials  
Population 
size  

Rust 
evaluation Model  

Maximum 
prediction 
accuracy  

Within (W)  
vs across  
(A)-cycle 
prediction  

Reference 

Historical bread wheat 365 SR 1 (APR) GBLUP 6  0.45 W [81] 

population     0.30 A  
Hexaploid spring 1163 YR 2 (IT 4)  rrBLUP 7 0.65 A [76] 

wheat accessions  YR (severity)  0.63 A  

  YR (IT)   0.80 W  
International bread  333 LR 3 (seedling) RKHS-MP 8 0.74 W [64] 

wheat nursery   LR (APR 5) RKHS-MP 0.52 W  
  YR (APR) GBLUP A 9 0.70 W  

  SR (APR) RKHS-MP 0.65 W  
International bread 313 LR (seedling) GBLUP A 0.70 W [64] 

wheat nursery  YR (seedling)  GBLUP A 0.78 W  

  LR (APR) RKHS-MP 0.56 W  
  YR (APR) GBLUP A 0.71 W  

  SR (APR) RKHS-MP 0.62 W  
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in additional to general crop management practices. Phenotyping for 
mycotoxin is only conducted after harvest; is expensive and labor 
intensive, and weakly correlated with visual assessments of FHB 
resistance [82]. Considering these complexities, developing reliable 
markers for marker-assisted selection (MAS) is highly desirable. However, 
the implementation of MAS for FHB is deemed only partially effective due 
to the complex genetic architecture [83]. GS models can enhance selection 
capacity at early breeding cycles when FHB phenotyping is impractical 
due to the large population size and low number of seeds. The application 
of GS allows the effective utilization of limited FHB nursery capacity for 
evaluating the most promising breeding materials, hence accelerating the 
release of resistant cultivars.  

Most GS studies of FHB resistance used ridge regression-best unbiased 
linear prediction (rrBLUP). This is an infinitesimal model with all markers 
sharing a common variance, and all effects are shrunken toward zero [84]. 
When major genes are present, this model underestimates the genetic 
variance. Alternative models that account for the effect of major genes are 
Bayesian [85], least absolute shrinkage and selection operator (LASSO) [86] 
and the elastic net [87] that combines LASSO and rrBLUP strengths in a 
single model. Both Bayesian and LASSO model were previously used for 
GS of FHB by Rutkoski et al. [88] however, none of them provided higher 
prediction accuracy over rrBLUP. Arruda et al. [48] suggested that rrBLUP 
outperform LASSO and elastic net in a GS study of FHB in a population 
consisting of soft red winter wheat lines from midwestern and eastern 
United States. Multiple studies also used genomic best linear unbiased 
prediction (GBLUP) which uses genomic relationship to estimate 
phenotype and is the most basic GS model [89]. GBLUP has been 
successfully used by three independent GS studies of FHB since 2016 
[83,90,91] (Table 2). Given the contribution of several minor effect genes 
to FHB resistance, rrBLUP is therefore the most common model advised 
for GS of FHB, and other models that consider marker effects such as 
LASSO and Bayesian are less common. An additional drawback of LASSO 
and Bayesian models is that they are very computationally demanding 
[74].  

An alternative approach that is often used to improve rrBLUP 
prediction is to identify FHB resistance QTL using GWAS and treat them as 
fixed effects in the model. For example, Arruda et al. [74] reported up to 
15% improvement in prediction accuracy after combining the FHB 
resistance QTL into the rrBLUP model as fixed effects. For the training 
population, it seems beneficial to conduct a GWAS to identify QTL and 
combine them into rrBLUP model as fixed effect. However, this may 
introduce an artifact if the entire population, including the training and 
validation set, is used to identify QTL. In a realistic scenario, the validation 
set does not have phenotypic data and cannot be used for QTL detection. 
Using data from the validation set to help improve prediction accuracy is 
an example of “data snooping”. In certain cases, the data snooping can 
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make MAS appear more effective than GS as suggested for some FHB traits 
measured in 273 soft red winter wheat lines from the US Midwestern and 
Eastern regions [74].  

Several studies have shown that phenotypic selection is more accurate 
than GS [91,92]. However, according to Steiner et al. [91], the application 
of GS for FHB resistance led to a 43% selection advantage over a two-stage 
FHB phenotypic selection. Since GS across cycles (predicting using 
phenotypic data obtained from previous breeding cycles) generally has a 
lower prediction accuracy than the within cycle GS, such application in 
breeding programs requires the improvement of GS across cycles. The 
increasing application of GS for yield in wheat breeding programs, along 
with the availability of skim sequencing at reasonable prices indirectly 
provide the opportunity to use GS for FHB resistance at nearly zero cost. 
This reserves the limited capacity in FHB nurseries for testing more 
advanced elite materials and hence accelerates the release of FHB 
resistant cultivars. Awareness of the relatedness between training and 
validation populations and periodic updating of the selection models are 
imperative for the reliable application of GS in wheat breeding programs. 
GS studies addressed in this review are summarized in Table 2.  

Genomic Selection for Correlated Disease Resistance Traits 

The undesirable association between agronomic traits such as plant 
height (PH) and heading date (HD) with FHB resistance is a challenge for 
the application of GS. There is compelling evidence supporting the 
negative correlation between FHB resistance and PH and HD, which is 
often reflected as the co-localization of PH and HD QTL with FHB 
resistance QTL [32,34,35,93]. The dwarfing alleles of Rht-B1 and Rht-D1 
have been associated with FHB susceptibility [94,95]. This has motivated 
the phenotyping of PH and HD along with FHB resistance for most GS-FHB 
studies conducted since 2016 (Table 2). Interestingly, PH and HD were 
integrated into the GS models differently. Moreno-Amores et al. [83] 
evaluated three different approaches to combine PH and HD in the GS 
model: (1) correcting the FHB resistance trait values using PH and HD 
followed by using the corrected phenotypic data for single-trait GS (STGS), 
(2) using PH and HD for Multi-Trait GS (MTGS), and (3) adjusting GS using 
restriction indices with variable restriction enforced for FHB resistance, 
PH and HD. They indicated that combining PH and HD as a fixed effect in 
the GS model is a reasonable strategy to select moderately resistant lines 
with lower PH and earlier HD than the population average. In other words, 
successful selection is attainable to fine tuning the tradeoff between 
prediction accuracy and acceptable reduction in unfavorable agronomic 
traits.  Steiner et al. [91] also reported marginal improvement when using 
a MTGS model that combined PH and flowering date (FD), although it 
largely inflated the negative trade-off between GEBVs for FHB severity and 
the undesirable agronomic traits. They then applied a restriction index to  
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Table 2. Examples of GS studies of FHB in wheat. 

Plant materials  Population 
size  

FHB and agronomic 
traits  

Model  Treatment of covariance  
Maximum 
prediction 
accuracy  

Within (W)  
vs across  
(A)-cycle 
prediction  

Reference  

Soft red winter wheat 273 
FHB inc, FHB sev, 
FHB index 7, FDK 8, 
ISK 9, DON 

rrBLUP NA 0.9 W [74] 

Durum diversity mostly winter 
type  

178 FHB sev 1, PH 2, HD 3  GBLUP 10  PH and HD as fixed effect  0.75 W  [83] 

Spring wheat hybrids 1604 FHB sev, PH, HD  GBLUP  Multi-trait prediction  0.8 W  [90] 

Durum wheat cultivars  228 FHB sev, PH, FD 4  GBLUP  Multi-trait prediction  0.6 A  [91] 

Durum wheat diversity mostly 
winter type  

184 FHB sev, PH, HD  rrBLUP  NA  0.7 W  [92] 

Winter wheat breeding lines 
from 14 bi-parental population  

1120 FHB sev, PH, HD  Weighted rrBLUP 11  Not included  0.72 W  [96] 

Spring wheat breeding lines  439 FHB sev  rrBLUP  NA  0.42 A  [97] 

Spring wheat breeding lines  170 
FHB Inc 5, FHB Sev 
and DON 6  

rrBLUP  NA  0.6 W  [98] 

1 FHB severity: % of infected spike; 2 plant height; 3 heading date; 4 flowering date; 5 FHB incidence: % of infected spikes; 6 deoxynivalenol; 7 FHB index = (FHB incidence × FHB severity)/100; 8 Fusarium 

damaged kernel; 9 incidence-severity-kernel index = 0.3 FHB inc × 0.3 FHB sev × 0.4 FDK; 10 genomic best linear unbiased prediction; 11 ridge regression-best unbiased linear prediction. 
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compensate for inflation that only led to marginal improvement. These 
results reiterate the trade-off between integrating PH and FD in the 
multivariate model and the reduction in prediction accuracy of FHB 
resistance. Comparing STGS and MTGS for FHB resistance in a population 
of 1604 wheat hybrids, Schulthess et al. [90] suggested that the application 
of MTGS is only advantageous for genotypes less related to the training set. 
They also proposed the concept of “phenotype imputation”, when the 
indirect selection of a highly heritable traits leads to improvement in a 
correlated trait of lower heritability [53,99]. By progressively reducing the 
intensity of FHB resistance phenotyping and thus trait heritability, they 
proved that FHB severity could be imputed from PH data. To alleviate the 
unfavorable increase in PH, a tandem selection strategy or a restricted 
selection index that discards the extremely tall plants prior to GS was 
recommended [90]. The low variation for FHB resistance in short and early 
flowering lines and the pleiotropic effects of PH and HD genes on FHB 
resistance are some of the impediments to the use of MTGS for GS of FHB 
resistance.  

Given the unfavorable association of FHB resistance with PH and HD, 
genomic prediction indices are expected to minimize the bias for the 
undesirable traits and thus allow GS of FHB resistance, semi-dwarf and 
early-heading lines. Steiner et al. [91] deployed a GS index by assigning 
different weight to FHB resistance, PH and FD. Genomic selection of only 
FHB traits in the model resulted in an undesirable increase in PH and FD, 
which could be compensated for by the application of the selection index. 
The resulting reduction in prediction accuracy was mitigated by adjusting 
the weight of each trait in the selection index. The integration of FHB 
resistance QTL as fixed effect in the STGS along with MTGS guided by 
restriction indices are thus far the most promising strategies for the GS of 
FHB resistance.  

Incorporation of multiple traits into GS models for FHB shows promise; 
this is particularly true in the advent of high-throughput phenotyping and 
phenomics. Application of phenomics in plant breeding has recently 
gained attention. It also enables the discovery of agronomic traits with 
FHB resistance that have not yet been examined. Enhancing high-
throughput phenotyping for FHB resistance under field conditions is 
expected to increase the accuracy and reduce the cost of phenotyping. 
Significant progress has been made in developing algorithms capable of 
accurate detection of wheat spikes from images collected using Ground 
Mobil imaging units [100]. This will pave the way for the detection of 
infected areas of spikes using deep learning techniques in future [100]. 
Improving the phenotyping accuracy and throughput can improve the 
predictability of GS models over the levels predicted in the previous 
studies. In addition to providing FHB phenotyping data, information on 
other traits is also collected through analysing high-resolution images 
captured by Mobil imaging units and/or Unmanned Aerial Vehicle with 
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minimal effort. These additional data can be incorporated into multi-trait 
GS models to improve prediction accuracies for FHB resistance.  

APPLICATIONS OF PHENOMICS AND MACHINE LEARNING FOR 
EVALUATING PLANT DISEASE  

Plant breeders are constantly searching for specific traits that help 
farmers grow crops more efficiently, while using fewer natural resources. 
They usually phenotype large populations for several traits throughout the 
crop growth cycle. This tedious task of phenotyping multiple traits and 
large populations is exacerbated by the necessity of sampling multiple 
environments and growing replicated trials. 

New technologies and tools have emerged to speed up the breeding 
process for rapid release of cultivars that meet the industry and 
consumers demands. An example of this is high-throughput phenotyping 
and imaging, which enables non-destructive field-based plant 
phenotyping for a large number of traits including physiological, biotic 
(e.g., weeds, insects and diseases caused by fungi, bacteria and virus) and 
abiotic (e.g., heat, drought, and flood, nutrient deficiency) stress 
traits [101,102]. The adoption of new phenotyping and genotyping 
technnolgies has generated a huge amount of complex data, including 
sequencing data, transcriptomic data, metabolomics data and imaging 
data. A challenge attached to the exponential growth of data is analysis 
and interpretation. Machine learning (ML) is set to play a pivotal role in 
sustainable and precision agriculture. One of the major advantages of ML 
is the ability to search large datasets to discover patterns and features 
(traits) by simultaneously looking at a combination of factors instead of 
analyzing each feature individually. Because ML algorithms can 
potentially approximate any function, ML may easily uncover genuine 
patterns within complex datasets [103,104]. In addition, ML allows 
algorithms to interpret data by learning patterns through experience 
[105]. 

Success stories of ML cover various research fields, including robotics 
[106], bioinformatics [107], biochemistry [108], medical diagnosis 
[109,110], meteorology [111] and climatology [112]. In agricultural 
research, ML techniques have been used for predicting regulatory and 
non-regulatory regions in the maize genome [113], predicting mRNA 
expression levels in maize [114], polyadenylation site prediction in 
Arabidopsis thaliana [115] and predicting macronutrient deficiencies in 
tomato [116]. Only few practical examples related to crop breeding were 
reported for predicting yield in many crops (see [117] for a review), 
including wheat [118,119] and maize [120]. ML has been also applied to 
FHB and rust resistance in wheat [100,121,122].  

When tracking any plant disease, an early and accurate identification 
is essential. The traditional method of identifying disease is visual 
examination, which is prone to human errors and variability in scoring. 
For a trained algorigthm, diagnosing plant disease is essentially pattern 
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recognition. After going through hundreds of thousands of diseased plant 
images, ML algorithms can assess disease type and severity. Deep learning 
techniques, particularly Convolutional Neural Networks (CNN), are 
quickly becoming the preferred method for automatic plant disease 
recognition [123]. An exhaustive study including 79 diseases (e.g., powdery 
mildew and leaf rust) affecting 14 plant species (e.g., soybean, corn and 
wheat) has confirmed the effectiveness of CNN for plant disease 
assessment [124]. Similarly, Ferentinos [125] identified plant disease 
through images of 25 plant species, with an average accuracy of 99% using 
CNN. In wheat, deep learning techniques have recently been applied to the 
detection of FHB with an average accuray of 92% [100,121]. For the first 
study by Qiu et al. [100], field trials were divided into 10 regions of China, 
with a hyperspectral image acquired for each region. Several 
environmental factors influencing the hyperspectral imagery were 
considered, including wind, humidity, temperature and experimental 
time (noon) where the sunbeam angle was optimal. The images data were 
used to train nine ML algorithms. For the second study by Jin et al. [121], 
three wheat lines with different levels of susceptibility to FHB were 
cultivated on the St. Paul campus at the University of Minnesota (USA). 
After innocultion, data acquisition was performed with a camera imaging 
pipeline at the milk stage of development. Diseased areas of individual 
spikes were detected using a deep convolutional neural network. 

Machine learning methods are useful to analyse large data sets that are 
hampered by issues such as a small number of observations and a large 
number of predictive variables, high dimensionality or highly correlated 
data structures [126]. Therefore, developing high-throuput phenotyping 
techniques combined with the power of ML would improve the efficiency 
of FHB assessment in the field, as ML provides substantial advantages over 
other analytical approaches for large and diverse datasets such as those 
generated by photo imaging [127]. 

ADVANCES IN GENOTYPING AND FUTURE PROSPECTS FOR GS  

Genomic selection has been established on the availably of DNA 
markers linked with all small effect loci contributing to phenotype. In fact, 
reduction in genotyping cost and the availability of high-density 
genotyping platform has been the driving force for the application of GS 
in plant breeding. Single nucleotide polymorphism (SNP) array and 
genotyping-by-sequencing platforms have been developed for over 25 
crop species (reviewed by Rasheed et al. [128]. Although, for the majority, 
an ultra-high throughput and cost-effective genotyping platforms 
desirable for GS is still not available.  

Wheat genomics came of age with the availability of bread, durum and 
wild emmer wheat reference genome assemblies in the past few years 
[124,129,130]. The genomes of 15 wheat cultivars assembled through 10+ 
Wheat Genomes Project is now publicly available (Walkowiak et al. under 
review; http://www.10wheatgenomes.com/). Leveraging these resources to 
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devise high-throughput and cost-effective genotyping platforms is a 
significant step toward transferring these investments to breeders and 
consequently farmers’ fields.  

To date of this review, five SNP chips have been developed and 
benchmarked for genotyping wheat. Such efforts were initiated by 
developing a SNP array with 9000 gene-associated SNPs in a worldwide 
bread wheat collection of 2994 accessions [131] followed by development 
of the wheat 90K iSelect array [132] from RNA sequences of a diverse panel 
of 726 accessions including tetraploid and hexaploid landraces. The wheat 
90K iSelect array is by far the most intensively used SNP array in wheat 
mapping research. High-throughput SNPs arrays for wheat have also been 
developed, i.e., the wheat 660K axiom (https://www.cerealsdb.uk.net/ 
cerealgenomics/CerealsDB/axiom_download.php) and the Wheat HD 
genotyping array [133]. The later harbor 820K SNPs and integrate 
variation from diploid, tetraploid and hexaploid wheat accessions and 
wheat relatives, thus enhancing the genotyping capacity beyond the 
primary gene pool [133]. Among the very few efforts to make these 
resources accessible to breeders is the generation of the Wheat Breeder’s 
Genotyping Array by refocusing on 35K mostly co-dominant SNPs 
discovered through exome sequencing of wheat cultivars. Genotyping by 
SNP arrays has significantly boosted high-density linkage and QTL 
mapping and GWAS in wheat; however, the cost of genotyping has 
impeded intensive application of GS because it requires genotyping 
several thousand lines per year.  

Genotyping through sequencing has been widely applied for de novo 
discovery of SNPs in model plants. Application of this approach has been 
slow in wheat mainly due to the absence of a high-quality reference 
genome and the high cost of genome sequencing [134]. The high 
sequencing cost of the large genome of wheat has motivated researchers 
to apply reduced-representation methods such as RNA-seq [135], exome-
sequencing [136] and genotyping-by-sequencing [137]. In certain cases, the 
reduced representation methods have been used to obtain the sequence of 
certain gene families in wheat, e.g., disease resistance genes [138]. As the 
cost of sequencing is reduced and SNP imputation methods improve, low 
coverage (skim) sequencing is gaining attention due to its lower error rates 
and higher genome coverage. Availability of third-generation sequencing 
at a reasonable cost based on long sequencing reads hold a potential for 
further integration of structural variants such as presence/absence 
variants (PAVs) and copy number variants (CNVs) into QTL mapping and 
genomic prediction studies. PAVs and CNVs seem to form a significant 
portion of the variation present between cultivars and wild germplasm. 
Including these types of variants would be of great value for studies aimed 
at enhancing genetic variation in wheat. Such an effort has been initiated 
through an international project dubbed 4D Wheat (Diversity, 
Domestication, Discovery and Delivery) that targets mobilizing genetic 
variation in the wheat secondary and tertiary gene pools and their 
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application in de novo re-domestication of wheat (Pozniak and Cloutier, 
personal communication). Partnerships among 4D Wheat and companies 
offering third generation sequencing is expected to lead to the availability 
third generation skim sequencing platforms enabling cost-effective 
discovery of PAVs and CNVs for several genetic and GS studies. Skim 
sequencing of exotic materials facilitate enhancing the diversity within 
wheat breeding gene pool. 

As haplotypes are inherited independently, but not SNPs, the required 
number of SNPs to cover all haplotypes is often several times lower than 
the number discovered through most genotyping platforms discussed 
above [139]. However, GS accuracy is often positively correlated with 
marker density, as it theoretically increases the odds of QTL lying in 
linkage disequilibrium (LD) with at least one marker. For example, 
genomic prediction accuracy improved by 10% when the number of 
markers increased from 92 to 1158 for a population of 374 winter wheat 
advanced-cycle breeding lines [140]. However, the prediction accuracy 
plateaus at a certain marker density, depending on the genetic diversity 
within the population and relatedness between the training and validation 
population [141]. The prediction accuracy decreases as the number of 
markers increases over this threshold, as the consequence of an over-fitted 
model [142]. In most cases, 1000–1500 SNPs have been recommended for 
genomic prediction studies in wheat, however, the decision over what 
markers to include largely depends on the diversity within the training 
and validation population and their relatedness. Thus, it seems realistic to 
develop program-specific breeder SNP chips that captures the available 
haplotypes at a reasonable cost. The decision on what SNPs to be included 
in the breeder chip could be based on the estimation of LD decay over 
genetic distances inferred from high-density QTL mapping studies 
[34,35,143] or comprehensive haplotype mapping of wheat diversity 
panels [136,144]. Thus, in addition to high-throughput phenotyping, 
advances in genotyping technologies are also shaping the future of GS 
including SNP arrays and DNA/RNA sequencing.  

APPLICATION OF OTHER “OMICS” IN GS  

To our knowledge other “omics” have not yet been utilized for GS in 
wheat. Inclusion of intermediary biological strata in the cascade from 
genotype to phenotype (endophenotypes) could improve prediction 
accuracy. This is attributed to the contribution of endophenotypes to the 
identification of epistatic interactions within and between various gene 
regulation strata [145]. The most attention has been given to the 
transcriptome, which reflects and quantifies gene expression. Previously, 
transcriptomics has been deployed for genomic prediction in maize 
[146,147]. The metabolome has also garnered attention since it integrates 
all gene regulation and interaction processes. Metabolomics has been 
successfully used for phenotypic prediction in maize [147]. In a recent 
study, the combination of transcriptomics of mRNA and sRNA, and 
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metabolomic data were used to predict the yield performance of maize 
hybrids [145]. The combination of genomic and mRNA data returned 10% 
higher prediction accuracy, while including sRNA in the model had 
negligible effect on the prediction accuracy. Interestingly, the difference 
between transcriptomic and combined genomic and transcriptomic data 
was negligible, suggesting that mRNA data could alone be used to achieve 
high predictability.  

Practically, transcriptomic prediction benefits from both gene 
expression data and SNP discovery for a combined genomic and 
transcriptomic prediction platform. Despite these advantages, integration 
of transcriptome data has been impeded by the higher cost of mRNA 
sequencing compared with DNA sequencing, the poor correlation between 
gene expression under controlled conditions and field environments, and 
the tendency to discover non-heritable variation. Nevertheless, the cost 
seems to be reasonable in wheat hybrid breeding programs as the 
transcriptomes of a limited number of founder lines is analyzed. 
Transcriptome data could be generated for a subset of founder lines and 
used to develop models for imputing the value of others using pedigree 
and genomic data [148]. Application cost could also be reduced by utilizing 
3’Pool-seq, which is claimed to reduce the library preparation cost up to 
90% with marginal reduction in the accuracy of gene expression 
quantification [149]. In addition, the BART-seq platform allows the 
utilization of reduced-representation transcriptome sequencing [150] that 
could theoretically capture the expression of a certain set of genes relevant 
to the trait of interest. The validation of both methods in wheat warrants 
further investigation. Once validated, these techniques could be applied in 
future “omics” prediction studies in wheat, especially as hybrid breeding 
is gaining ground as a new strategy for genetic improvement in wheat 
[151]. 

CONCLUDING REMARKS  

The present review tapped into several high-impact GS studies 
conducted during last five years for rust and FHB to identify the most 
effective protocol for implementing GS in breeding programs. Despite 
significant variability in how GS was implemented in these studies, we 
identified few common grounds. A significant common theme was the 
tendency to integrate several data e.g., pedigree, genotype × environment 
interaction and QTL identified through mapping studies into a model. A 
reasonable strategy suggested was the application of MAS to increase the 
frequency of favourable alleles for traits with strong additive QTL at early 
generations and GS to capture positive alleles with smaller additive effect 
in later generation materials. On the contrary, others argue the benefit of 
using GS at early generation where population size and shortage of seed 
impede intensive phenotyping at disease nurseries. The relatively low 
across-cycle predictability of GS is a hurdle for the application of the later 
strategy. The across-cycle predictability of GS could be improved by 
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increasing the size of training populations, and the periodic retraining of 
the model and validating of the model. Accurate and high-throughput 
phenotyping combined with the power of ML is expected to promote the 
application of GS by reducing the phenotypic error and thus increasing the 
across-cycle predictability of GS. It could also unveil complex association 
of the resistance with other phenological traits and supply detailed data 
for modeling such complex associations.  

Multi-trait GS has appeared as a useful strategy for selecting 
quantitative resistance, especially for FHB considering the well-realized 
association of FHB with PH and HD. Majority of GS studies on FHB benefit 
from integration of PH and HD (or FD) into the prediction models. 
However, unsupervised integration of PH and HD in the models leads to 
undesirable increase in PH and delayed HD. Efforts to mitigate such 
undesirable effects leads to reduction in the predictability of the model. 
Another challenge for the application of MTGS for FHB is the low variation 
for FHB resistance in short stature wheat germplasm and the pleiotropic 
effect of PH and HD on FHB resistance. Despite these challenges, MTGS was 
proved partially useful when GS models were adjusted using restriction 
indices for PH and HD, allowing some selection gain for FHB resistance, 
semi-dwarf, and early heading germplasm. High-throughput phenomics 
empowered by ML would be of great value to uncover the association with 
other agronomic traits not yet considered in the previous genetic studies 
on rust and FHB resistance. Exotic germplasm and landraces hold promise 
for improving FHB and rust resistance in wheat. Availability of skim 
sequencing at reasonable cost has made discovering structural variation 
across various wheat gene pools possible. Skim sequencing of a large 
number of exotic materials facilitate enhancing the diversity within wheat 
breeding gene pool.  

All in all, we expect GS to be intensively applied in wheat breeding 
programs given its numerous advantages such as improving selection 
gain, reducing the need for labor-intensive and costly phenotyping at 
disease nurseries and accelerating the utilization of genetic variation. The 
availability and predictability of GS for wheat breeding could be enhanced 
by ML empowered high-throughput and precise phenotyping, the cost-
effective application of “omics” for improving the GS predictability, and 
the availability of endophenotypes such as transcriptome and 
metabolome data in effort to better model epistatic and genotype × 
environment interaction. Reducing the cost per sample for such 
endophenotypes is a prerequisite for their integration in GS studies in 
inbred and hybrid wheat breeding. On the other hand, ML would allow for 
a more accurate disease diagnosis, while preserving energy and 
generating consistent/repeatable data. However, dataset limitations 
(number and variety of samples) hamper the development of truly 
efficient platforms for plant disease classification. Fortunately, some 
efforts towards building and sharing more representative publicly 
available databases are underway. Thus, future studies could focus on 
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improving across-cycle GS predictability through integrating modern 
technologies and big data sciences.  

CONFLICTS OF INTEREST 

The authors declare that they have no conflicts of interest. 

FUNDING 

We are grateful for funding from the Canadian Triticum Applied 
Genomics research project (CTAG2) funded by Genome Canada, Genome 
Prairie, the Western Grains Research Foundation, Saskatchewan Ministry 
of Agriculture, Saskatchewan Wheat Development Commission, Alberta 
Wheat Commission, Viterra and Manitoba Wheat and Barley Growers 
Association. 

ACKNOWLEDGMENTS 

The authors express their appreciation to anonymous reviewers for 
their valuable suggestions to improve the manuscript.  

REFERENCES  

1. FAO. The future of food and agriculture―Alternative pathways to 2050. Rome 

(Italy): FAO; 2018. p. 224. 

2. Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, et 

al. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744-54. 

3. Gautam HR, Bhardwaj ML, Kumar R. Climate change and its impact on plant 

diseases. Curr Sci. 2013;105(12):1685-91. 

4. FAOSTAT. FAOSTAT Data. Available from: 

http://wwwfaoorg/faostat/en/#data/QC 2019. Accessed 26 Apr 2020. 

5. Chen XM. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. 

tritici] on wheat. Can J Plant Pathol. 2005;27(3):314-37. 

6. Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. The past, present and future of 

breeding rust resistant wheat. Front Plant Sci. 2014;5:641. 

7. Huerta-Espino J, Singh RP, Roelfs AP. Rusts fungi of wheat. In: Misra JK, 

Tewari JP, Deshmukh SK, Vágvölgyi C, editors. Fungi From Different 

Substrates. Boca Raton (FL, US): CRC Press; 2014. p. 217-59. 

8. Hulbert S, Pumphrey M. A time for more booms and fewer busts? Unraveling 

cereal-rust interactions. Mol Plant Microbe Interact. 2014;27(3):207-14. 

9. Kolmer JA. Tracking wheat rust on a continental scale. Curr Opin Plant Biol. 

2005;8(4):441-9. 

10. McIntosh RA, Wellings CR, Park RF. Wheat Rusts: An Atlas of Resistance 

Genes. Melbourne (Australia): CSIRO Publishing; 1995. 

11. Murray GM, Brennan JP. Estimating disease losses to the Australian wheat 

industry. Australas Plant Pathol. 2009;38(6):558-70. 

12. Stakman EC, Harrar JG. Principles of plant pathology. New York (US): Ronald 

Press; 1957. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 

http://wwwfaoorg/faostat/en/%23data/QC%202019


 
Crop Breeding, Genetics and Genomics 20 of 29 

13. Wicki W, Winzeler M, Schmid JE, Stamp P, Messmer M. Inheritance of 

resistance to leaf and glume blotch caused by Septoria nodorum Berk. in 

winter wheat. Theor Appl Genet. 1999;99(7):1265-72. 

14. Dexter J, Clear R, Preston K. Fusarium head blight: effect on the milling and 

baking of some Canadian wheats. Cereal Chem. 1996;73:695-701. 

15. Roelfs AP, Singh RP, Saari EE. Rust Diseases of Wheat: Concepts and Methods 

of Disease Management. Mexico (Mexico): CIMMYT; 1992. 

16. Huerta-Espino J, Singh RP, Germán S, McCallum BD, Park RF, Chen WQ, et al. 

Global status of wheat leaf rust caused by Puccinia triticina. Euphytica. 

2011;179(1):143-60. 

17. McCallum BD, Hiebert CW, Cloutier S, Bakkeren G, Rosa SB, Humphreys DG, 

et al. A review of wheat leaf rust research and the development of resistant 

cultivars in Canada. Can J Plant Pathol. 2016;38(1):1-18. 

18. Figueroa M, Hammond-Kosack KE, Solomon PS. A review of wheat diseases—

a field perspective. Mol Plant Pathol. 2018;19(6):1523-36. 

19. Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to 

wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in 

Uganda. Plant Dis. 2000;84:203. 

20. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, et al. 

Emergence and spread of new races of wheat stem rust fungus: Continued 

threat to food security and prospects of genetic control. Phytopathology. 

2015;105(7):872-84. 

21. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, et al. Will 

stem rust destroy the world's wheat crop? In: Volume 98, Advances in 

Agronomy. Cambridge (MA, US): Academic Press; 2008. p. 271-309. 

22. Milus EA, Kristensen K, Hovmøller MS. Evidence for increased aggressiveness 

in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe 

rust of wheat. Phytopathology. 2009;99(1):89-94. 

23. Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted 

selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 

2009;128(1):1-26. 

24. Haile JK, N'Diaye A, Walkowiak S, Nilsen KT, Clarke JM, Kutcher HR, et al. 

Fusarium head blight in durum wheat: Recent status, breeding directions, and 

future research prospects. Phytopathology. 2019;109(10):1664-75. 

25. Liu S, Hall MD, Griffey CA, McKendry AL. Meta-analysis of QTL associated 

with Fusarium head blight resistance in wheat. Crop Sci. 2009;49(6):1955-68. 

26. Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, et al. A deletion mutation in 

TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet. 

2019;51(7):1099-105. 

27. Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, et al. Horizontal gene transfer 

of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. 

Science. 2020;368(6493):eaba5435. 

28. Pumphrey M, Bernardo R, Anderson JA. Validating the QTL for Fusarium head 

blight resistance in near-isogenic wheat lines developed from breeding 

populations. Crop Sci. 2007;47:200-6. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 21 of 29 

29. Bernardo AN, Ma H, Zhang D, Bai G. Single nucleotide polymorphism in wheat 

chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol 

Breed. 2012;29(2):477-88. 

30. Brar GS, Pozniak CJ, Kutcher HR, Hucl PJ. Evaluation of Fusarium head blight 

resistance genes Fhb1, Fhb2, and Fhb5 introgressed into elite Canadian hard 

red spring wheats: effect on agronomic and end-use quality traits and 

implications for breeding. Mol Breed. 2019;39(3):44. 

31. Bai GH, Shaner G, Ohm H. Inheritance of resistance to Fusarium graminearum 

in wheat. Theor Appl Genet. 2000;100(1):1-8. 

32. Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H. 

Mapping of QTL for Fusarium head blight resistance and morphological and 

developmental traits in three backcross populations derived from Triticum 

dicoccum × Triticum durum. Theor Appl Genet. 2012;125(8):1751-65. 

33. Miedaner T, Longin CFH. Genetic variation for resistance to Fusarium head 

blight in winter durum material. Crop Pasture Sci. 2014;65(1):46-51. 

34. Sari E, Berraies S, Knox RE, Singh AK, Ruan Y, Cuthbert RD, et al. High density 

genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. 

PLoS One. 2018;13(10):e0204362. 

35. Sari E, Knox RE, Ruan Y, Henriquez MA, Kumar S, Burt AJ, et al. Historic 

recombination in a durum wheat breeding panel enables high-resolution 

mapping of Fusarium head blight resistance quantitative trait loci. Sci Rep. 

2020;10(1):7567. 

36. Miedaner T, Korzun V. Marker-Assisted Selection for Disease Resistance in 

Wheat and Barley Breeding. Phytopathology. 2012;102:560-6. 

http://dx.doi.org/10.1094/PHYTO-05-11-0157 

37. Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, et al. Applying 

association mapping and genomic selection to the dissection of key traits in 

elite European wheat. Theor Appl Genet. 2014;127(12):2619-33. 

38. Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R. Assessing and 

exploiting functional diversity in germplasm pools to enhance abiotic stress 

adaptation and yield in cereals and food legumes. Front Plant Sci. 2017;8:1461. 

39. Jannink J-L, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from 

theory to practice. Brief Funct Genom. 2010;9(2):166-77. 

40. Bernardo R. Bandwagons I, too, have known. Theor Appl Genet. 

2016;129(12):2323-32. 

41. Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, et al. Enhancing genetic gain in the era 

of molecular breeding. J Exp Bot. 2017;68(11):2641-66. 

42. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using 

genome-wide dense marker maps. Genetics. 2001;157(4):1819-29. 

43. Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits 

in maize. Crop Sci. 2007;47(3):1082-90. 

44. Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, et al. Genomic 

selection outperforms marker assisted selection for grain yield and 

physiological traits in a maize doubled haploid population across water 

treatments. Front Plant Sci. 2018;9:366. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 

http://dx.doi.org/10.1094/PHYTO-05-11-0157


 
Crop Breeding, Genetics and Genomics 22 of 29 

45. Guo Z, Tucker DM, Wang D, Basten CJ, Ersoz E, Briggs WH, et al. Accuracy of 

across-environment genome-wide prediction in maize nested association 

mapping populations. G3 (Bethesda). 2013;3(2):263-72. 

46. Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME. Plant breeding with genomic 

Selection: Gain per unit time and cost. Crop Sci. 2010;50(5):1681-90. 

47. Mayor PJ, Bernardo R. Genomewide selection and marker-assisted recurrent 

selection in doubled haploid versus F2 populations. Crop Sci. 2009;49(5):1719-

25. 

48. Arruda M, Brown P, Lipka A, Krill A, Thurber C, Kolb F. Genomic selection for 

predicting Fusarium head blight resistance in a wheat breeding program. 

Plant Genome. 2015;8:1-12. 

49. Castro Aviles A. Identification of quantitative trait loci (QTLs) for resistance 

to Fusarium head blight (FHB) in wheat variety AGS 2060 and evaluation of 

the effect of Fhb1 resistance gene on FHB reaction in a Louisiana wheat 

breeding population [Doctoral Dissertation]. Baton Rouge (LA, US): Louisiana 

State University (LSU); 2019. 

50. Longin CF, Mi X, Wurschum T. Genomic selection in wheat: optimum 

allocation of test resources and comparison of breeding strategies for line and 

hybrid breeding. Theor Appl Genet. 2015;128(7):1297-306. 

51. Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J. Breeding schemes for the 

implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 

2016;242:23-36. 

52. Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisigacker S, et al. 

Genomic selection for processing and end-use quality traits in the CIMMYT 

spring bread wheat breeding program. Plant Genome. 2016;9:1-12. 

53. Haile JK, N’Diaye A, Clarke F, Clarke J, Knox R, Rutkoski J, et al. Genomic 

selection for grain yield and quality traits in durum wheat. Mol Breed. 

2018;38(6):75. 

54. Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop 

improvement. Crop Sci. 2009;49(1):1-12. 

55. Ornella L, Singh S, Perez P, Burgueño J, Singh R, Tapia E, et al. Genomic 

prediction of genetic values for resistance to wheat rusts. Plant Genome. 

2012;5(3):136-48. 

56. Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, et al. Canopy 

temperature and vegetation indices from high-throughput phenotyping 

improve accuracy of pedigree and genomic selection for grain yield in wheat. 

G3 (Bethesda). 2016;6(9):2799-808. 

57. Sallam A, Smith K. Genomic selection performs similarly to phenotypic 

selection in barley. Crop Sci. 2016;56:2871-81. 

58. Sorrells ME. Genomic selection in plants: Empirical results and implications 

for wheat breeding. In: Ogihara Y, Takumi S, Handa H, editors. Advances in 

Wheat Genetics: From Genome to Field. Tokyo (Japan): Springer Japan; 2015. 

p. 401-9. 

59. Rutkoski J, Heffner E, Sorrells M. Genomic selection for durable stem rust 

resistance in wheat. Euphytica. 2011;179:161-73. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 23 of 29 

60. Poland J, Rutkoski J. Advances and challenges in genomic selection for disease 

resistance. Annu Rev Phytopathol. 2016;54:79-98. 

61. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, 

et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats. 

Euphytica. 2011;179(1):175-86. 

62. Parlevliet JE. Durability of resistance against fungal, bacterial and viral 

pathogens; present situation. Euphytica. 2002;124(2):147-56. 

63. Singh R, Huerta-Espino J, William HM. Genetics and breeding for durable 

resistance to leaf and stripe rust of wheat. Turkish J Agric For. 2005;29:121-7. 

64. Juliana P, Singh RP, Singh PK, Crossa J, Huerta-Espino J, Lan C, et al. Genomic 

and pedigree-based prediction for leaf, stem, and stripe rust resistance in 

wheat. Theor Appl Genet. 2017;130(7):1415-30. 

65. Shamshad M, Sharma A. The usage of genomic selection strategy in plant 

breeding. In: Next Generation Plant Breeding. London (UK): IntechOpen; 

2018. p. 93-109. 

66. Crossa J, Campos Gdl, Pérez P, Gianola D, Burgueño J, Araus JL, et al. 

Prediction of genetic values of quantitative traits in plant breeding using 

pedigree and molecular markers. Genetics. 2010;186(2):713-24. 

67. Burgueño J, de los Campos G, Weigel K, Crossa J. Genomic prediction of 

breeding values when modeling genotype × environment interaction using 

pedigree and dense molecular markers. Crop Sci. 2012;52(2):707-19. 

68. Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, et al. 

Genome-wide prediction models that incorporate de novo GWAS are a 

powerful new tool for tropical rice improvement. Heredity. 2016;116(4):395-

408. 

69. Daetwyler HD, Bansal U, Bariana H, Hayden M, Hayes B. Genomic prediction 

for rust resistance in diverse wheat landraces. Theor Appl Genet. 

2014;127:1795-803. 

70. Rutkoski J, Poland J, Singh R, Huerta-Espino J, Bhavani S, Barbier H, et al. 

Genomic selection for quantitative adult plant stem rust resistance in wheat. 

Plant Genome. 2014;7:1-10. 

71. Tomar V, Singh R, Poland J, Singh D, Joshi A, Singh P, et al. Genome-wide 

association study and Genomic Prediction of spot blotch disease in wheat 

(Triticum aestivum L.) using genotyping by sequencing. Research Square 

PPR125490 [Priprint]. [Posted 06 Feb 2020]. doi: 10.21203/rs.2.22818/v1 

72. Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. GWAS-assisted 

genomic prediction to predict resistance to Septoria Tritici Blotch in Nordic 

winter wheat at seedling stage. Front Genet. 2019;10:1224. 

73. Sehgal D, Rosyara U, Mondal S, Singh R, Poland J, Dreisigacker S. 

Incorporating genome-wide association mapping results into genomic 

prediction models for grain yield and yield stability in CIMMYT spring bread 

wheat. Front Plant Sci. 2020;11:197. 

74. Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, et al. 

Comparing genomic selection and marker-assisted selection for Fusarium 

head blight resistance in wheat (Triticum aestivum L.). Mol Breed. 

2016;36(7):84. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 24 of 29 

75. Crossa J, Jarquín D, Franco J, Pérez-Rodríguez P, Burgueño J, Saint-Pierre C, et 

al. Genomic prediction of gene bank wheat landraces. G3 (Bethesda). 

2016;6(7):1819-34. 

76. Muleta KT, Bulli P, Zhang Z, Chen X, Pumphrey M. Unlocking diversity in 

germplasm collections via genomic selection: A case study based on 

quantitative adult plant resistance to stripe rust in spring wheat. Plant 

Genome. 2017;10(3):1-15. 

77. Olatoye MO, Clark LV, Wang J, Yang X, Yamada T, Sacks EJ, et al. Evaluation of 

genomic selection and marker-assisted selection in Miscanthus and 

energycane. Mol Breed. 2019;39(12):171. 

78. Ornella L, González-Camacho JM, Dreisigacker S, Crossa J. Applications of 

genomic selection in breeding wheat for rust resistance. Methods Mol Biol. 

2017;1659:173-82. 

79. Pilet-Nayel M-L, Moury B, Caffier V, Montarry J, Kerlan M-C, Fournet S, et al. 

Quantitative resistance to plant pathogens in pyramiding strategies for 

durable crop protection. Front Plant Sci. 2017;8:1838. 

80. Quenouille J, Montarry J, Palloix A, Moury B. Farther, slower, stronger: how 

the plant genetic background protects a major resistance gene from 

breakdown. Mol Plant Pathol. 2013;14(2):109-18. 

81. Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, et al. 

Efficient use of historical data for genomic selection: A case study of stem rust 

resistance in wheat. Plant Genome. 2015;8(1):1-10. 

https://doi.org/10.3835/plantgenome2014.09.0046  

82. Sneller C, Guttieri M, Paul P, Costa J, Jackwood R. Variation for resistance to 

kernel infection and toxin accumulation in winter wheat infected with 

Fusarium graminearum. Phytopathology. 2012;102(3):306-14. 

83. Moreno-Amores J, Michel S, Miedaner T, Longin CFH, Buerstmayr H. Genomic 

predictions for Fusarium head blight resistance in a diverse durum wheat 

panel: An effective incorporation of plant height and heading date as 

covariates. Euphytica. 2020;216(2):22. 

84. Endelman JB. Ridge Regression and other kernels for genomic selection with 

R package rrBLUP. Plant Genome. 2011;4(3):250-5. 

85. Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, et 

al. Accuracy of genomic selection methods in a standard data set of Loblolly 

Pine (Pinus taeda L.). Genetics. 2012;190(4):1503-10. 

86. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc 

Series B Stat Methodol. 1996;58(1):267-88. 

87. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R 

Stat Soc Series B Stat Methodol. 2005;67(2):301-20. 

88. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M. 

Evaluation of genomic prediction methods for Fusarium head blight 

resistance in wheat. Plant Genome. 2012;5:51-61. 

89. Clark SA, van der Werf J. Genomic best linear unbiased prediction (gBLUP) 

for the estimation of genomic breeding values. Methods Mol Biol. 

2013;1019:321-30. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 

https://doi.org/10.3835/plantgenome2014.09.0046


 
Crop Breeding, Genetics and Genomics 25 of 29 

90. Schulthess AW, Zhao Y, Longin CFH, Reif JC. Advantages and limitations of 

multiple-trait genomic prediction for Fusarium head blight severity in hybrid 

wheat (Triticum aestivum L.). Theor Appl Genet. 2018;131(3):685-701. 

91. Steiner B, Michel S, Maccaferri M, Lemmens M, Tuberosa R, Buerstmayr H. 

Exploring and exploiting the genetic variation of Fusarium head blight 

resistance for genomic-assisted breeding in the elite durum wheat gene pool. 

Theor Appl Genet. 2019;132(4):969-88. 

92. Miedaner T, Sieber A-N, Desaint H, Buerstmayr H, Longin CFH, Würschum T. 

The potential of genomic-assisted breeding to improve Fusarium head blight 

resistance in winter durum wheat. Plant Breed. 2017;136(5):610-9. 

93. Buerstmayr H, Stierschneider M, Steiner B, Lemmens M, Griesser M, Nevo E, 

et al. Variation for resistance to head blight caused by Fusarium graminearum 

in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica. 

2003;130(1):17-23. 

94. Buerstmayr M, Buerstmayr H. The Semidwarfing alleles Rht-D1b and Rht-B1b 

show marked differences in their associations with anther-retention in wheat 

heads and with Fusarium head blight susceptibility. Phytopathology. 

2016;106(12):1544-52. 

95. He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E. Dwarfing 

genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility 

and low anther extrusion in two bread wheat populations. PLoS One. 

2016;11(9):e0162499. 

96. Herter CP, Ebmeyer E, Kollers S, Korzun V, Würschum T, Miedaner T. 

Accuracy of within- and among-family genomic prediction for Fusarium head 

blight and Septoria tritici blotch in winter wheat. Theor Appl Genet. 

2019;132(4):1121-35. 

97. Liu Y, Salsman E, Fiedler JD, Hegstad JB, Green A, Mergoum M, et al. Genetic 

mapping and prediction analysis of FHB resistance in a hard red spring wheat 

breeding population. Front Plant Sci. 2019;10:1007. 

98. Dong H, Wang R, Yuan Y, Anderson J, Pumphrey M, Zhang Z, et al. Evaluation 

of the potential for genomic selection to improve spring wheat resistance to 

Fusarium head blight in the Pacific Northwest. Front Plant Sci. 2018;9:911. 

99. Jia Y, Jannink J-L. Multiple-trait genomic selection methods increase genetic 

value prediction accuracy. Genetics. 2012;192(4):1513-22. 

100. Qiu R, Yang C, Moghimi A, Zhang M, Steffenson JB, Hirsch DC. Detection of 

Fusarium head blight in wheat using a deep neural network and color 

imaging. Remote Sens. 2019;11(22):2658. 

101. Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote 

sensing buggies and potential applications for field-based phenotyping. 

Agronomy. 2014;4(3):349-79. 

102. White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, 

et al. Field-based phenomics for plant genetics research. Field Crops Res. 

2012;133:101-12. 

103. Xu C, Jackson SA. Machine learning and complex biological data. Genome Biol. 

2019;20(1):76. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 26 of 29 

104. Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. 

Machine learning for integrating data in biology and medicine: Principles, 

practice, and opportunities. Inf Fusion. 2019;50:71-91. 

105. Hu H, Scheben A, Edwards D. Advances in integrating genomics and 

bioinformatics in the plant breeding pipeline. Agriculture. 2018;8(6):75. 

106. Takahashi K, Kim K, Ogata T, Sugano S. Tool-body assimilation model 

considering grasping motion through deep learning. Rob Auton Syst. 

2017;91:115-27. 

107. Olson RS, Cava WL, Mustahsan Z, Varik A, Moore JH. Data-driven advice for 

applying machine learning to bioinformatics problems. Pac Symp Biocomput. 

2018;23:192-203. 

108. Costello Z, Martin HG. A machine learning approach to predict metabolic 

pathway dynamics from time-series multiomics data. NPJ Syst Biol Appl. 

2018;4(1):19. 

109. Doan M, Carpenter AE. Leveraging machine vision in cell-based diagnostics 

to do more with less. Nat Mater. 2019;18(5):414-8. 

110. Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D, Montavon G, et 

al. Machine learning analysis of DNA methylation profiles distinguishes 

primary lung squamous cell carcinomas from head and neck metastases. Sci 

Transl Med. 2019;11(509):eaaw8513. 

111. Rhee J, Im J. Meteorological drought forecasting for ungauged areas based on 

machine learning: Using long-range climate forecast and remote sensing data. 

Agric For Meteorol. 2017;237-238:105-22. 

112. Fang K, Shen C, Kifer D, Yang X. Prolongation of SMAP to spatiotemporally 

seamless coverage of continental U.S. using a deep learning neural network. 

Geophys Res Lett. 2017;44(21):11,030-11,9. 

113. Mejía-Guerra MK, Buckler ES. A k-mer grammar analysis to uncover maize 

regulatory architecture. BMC Plant Biol. 2019;19(1):103. 

114. Washburn JD, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R, Buckler 

ES, et al. Evolutionarily informed deep learning methods for predicting 

relative transcript abundance from DNA sequence. Proc Natl Acad Sci U S A. 

2019;116(12):5542-9. 

115. Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S. 

An explainable deep machine vision framework for plant stress phenotyping. 

Proc Natl Acad Sci U S A. 2018;115(18):4613-8. 

116. Jaewon C, Trung TT, Thien TLH, Geon-Soo P, Dang CV, Jongwook K. A Nutrient 

deficiency prediction method using deep learning on development of tomato 

fruits. In: 2018 International Conference on Fuzzy Theory and Its Applications 

(iFUZZY); 2018 Nov 14-7; Daegu, South Korea. 

117. Mishra S, Mishra D, Santra GH. Applications of machine learning techniques 

in agricultural crop production: A review paper. Indian J Sci Technol. 

2016;9(38):1-14. 

118. Jeong JH, Resop JP, Mueller ND, Fleisher DH, Yun K, Butler EE, et al. Random 

forests for global and regional crop yield predictions. PLoS One. 

2016;11(6):e0156571. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 27 of 29 

119. Pantazi XE, Moshou D, Alexandridis T, Whetton RL, Mouazen AM. Wheat yield 

prediction using machine learning and advanced sensing techniques. Comput 

Electron Agric. 2016;121(C):57-65. 

120. Aghighi H, Azadbakht M, Ashourloo D, Shahrabi HS, Radiom S. Machine 

learning regression techniques for the silage maize yield prediction using 

time-series images of Landsat 8 OLI. IEEE J Sel Top Appl Earth Obs Remote 

Sens. 2018;11(12):4563-77. 

121. Jin X, Jie L, Wang S, Qi HJ, Li SW. Classifying wheat hyperspectral pixels of 

healthy heads and Fusarium head blight disease using a deep neural network 

in the wild field. Remote Sens. 2018;10(3):395. 

122. González-Camacho JM, Ornella L, Pérez-Rodríguez P, Gianola D, Dreisigacker 

S, Crossa J. Applications of machine learning methods to genomic selection in 

breeding wheat for rust resistance. Plant Genome. 2018;11:170104. 

123. Barbedo JGA. Factors influencing the use of deep learning for plant disease 

recognition. Biosyst Eng. 2018;172:84-91. 

124. Arnal Barbedo JG. Plant disease identification from individual lesions and 

spots using deep learning. Biosyst Eng. 2019;180:96-107. 

125. Ferentinos KP. Deep learning models for plant disease detection and 

diagnosis. Comput Electron Agric. 2018;145:311-8. 

126. Li B, Zhang N, Wang Y-G, George AW, Reverter A, Li Y. Genomic prediction of 

breeding values using a subset of SNPs identified by three machine learning 

methods. Front Genet. 2018;9:237. 

127. Libbrecht MW, Noble WS. Machine learning applications in genetics and 

genomics. Nat Rev Genet. 2015;16(6):321-32. 

128. Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, et al. Crop breeding chips 

and genotyping platforms: progress, challenges, and perspectives. Mol Plant. 

2017;10(8):1047-64. 

129. Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, et al. Shifting the 

limits in wheat research and breeding using a fully annotated reference 

genome. Science. 2018;361(6403):eaar7191. 

130. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, 

et al. Durum wheat genome highlights past domestication signatures and 

future improvement targets. Nat Genet. 2019;51(5):885-95. 

131. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-

wide comparative diversity uncovers multiple targets of selection for 

improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 

U S A. 2013;110(20):8057-62. 

132. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization 

of polyploid wheat genomic diversity using a high-density 90,000 single 

nucleotide polymorphism array. Plant Biotechnol J. 2014;12(6):787-96. 

133. Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, et 

al. High-density SNP genotyping array for hexaploid wheat and its secondary 

and tertiary gene pool. Plant Biotechnol J. 2016;14(5):1195-206. 

134. Uauy C, Wulff BBH, Dubcovsky J. Combining traditional mutagenesis with 

new high-throughput sequencing and genome editing to reveal hidden 

variation in polyploid wheat. Annu Rev Genet. 2017;51(1):435-54. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 28 of 29 

135. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, et al. 

RNA-Seq bulked segregant analysis enables the identification of high-

resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol 

J. 2015;13(5):613-24. 

136. He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, et al. Exome sequencing 

highlights the role of wild-relative introgression in shaping the adaptive 

landscape of the wheat genome. Nat Genet. 2019;51(5):896-904. 

137. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic 

Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant Genome. 

2012;5(3):103-13. 

138. Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ, et al. 

Resistance gene enrichment sequencing (RenSeq) enables reannotation of the 

NB-LRR gene family from sequenced plant genomes and rapid mapping of 

resistance loci in segregating populations. Plant J. 2013;76(3):530-44. 

139. Borrill P, Harrington SA, Uauy C. Applying the latest advances in genomics 

and phenomics for trait discovery in polyploid wheat. The Plant J. 

2019;97(1):56-72. 

140. Heffner E, Jannink J-L, Sorrells M. Genomic selection accuracy using 

multifamily prediction models in a wheat breeding program. Plant Genome J. 

2011;4:65. 

141. Norman A, Taylor J, Edwards J, Kuchel H. Optimising genomic selection in 

wheat: Effect of marker density, population size and population structure on 

prediction accuracy. G3 (Bethesda). 2018;8(9):2889-99. 

142. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, et al. 

Evaluation of genomic selection training population designs and genotyping 

strategies in plant breeding programs using simulation. Crop Sci. 

2014;54(4):1476-88. 

143. N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, et al. Single 

marker and haplotype-based association analysis of semolina and pasta 

colour in elite durum wheat breeding lines using a high-density consensus 

map. PLoS One. 2017;12(1):e0170941. 

144. Jordan KW, Wang S, Lun Y,  Gardiner L-J, MacLachlan R, Hucl P, et al. A 

haplotype map of allohexaploid wheat reveals distinct patterns of selection 

on homoeologous genomes. Genome Biol. 2015;16:48. 

145. Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A, Scholten S, et 

al. Beyond genomic prediction: combining different types of omics data can 

improve prediction of hybrid performance in maize. Genetics. 

2018;208(4):1373-85. 

146. Guo Z, Magwire MM, Basten CJ, Xu Z, Wang D. Evaluation of the utility of gene 

expression and metabolic information for genomic prediction in maize. 

Theor Appl Genet. 2016;129(12):2413-27. 

147. Westhues M, Schrag TA, Heuer C, Thaller G, Utz HF, Schipprack W, et al. 

Omics-based hybrid prediction in maize. Theor Appl Genet. 2017;130(9):1927-

39. 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 



 
Crop Breeding, Genetics and Genomics 29 of 29 

148. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll 

RJ, et al. A gene-based association method for mapping traits using reference 

transcriptome data. Nat Genet. 2015;47(9):1091-8. 

149. Sholder G, Lanz TA, Moccia R, Quan J, Aparicio-Prat E, Stanton R, et al. 3’Pool-

seq: an optimized cost-efficient and scalable method of whole-transcriptome 

gene expression profiling. BMC Genomics. 2020;21(1):64. 

150. Uzbas F, Opperer F, Sönmezer C, Shaposhnikov D, Sass S, Krendl C, et al. BART-

Seq: cost-effective massively parallelized targeted sequencing for genomics, 

transcriptomics, and single-cell analysis. Genome Biol. 2019;20(1):155. 

151. Gupta PK, Balyan HS, Gahlaut V, Saripalli G, Pal B, Basnet BR, et al. Hybrid 

wheat: past, present and future. Theor Appl Genet. 2019;132(9):2463-83. 

 

 

How to cite this article: 

Haile JK, N’Diaye A, Sari E, Walkowiak S, Rutkoski J, Kutcher RK, Pozniak CJ. Potential of Genomic Selection and 

Integrating “Omics” Data for Disease Evaluation in Wheat. Crop Breed Genet Genom. 2020;2(4):e200016. 

https://doi.org/10.20900/cbgg20200016 

Crop Breed Genet Genom. 2020;2(4):e200016. https://doi.org/10.20900/cbgg20200016 


	FUNDING

