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ABSTRACT 

In this paper is reviewed some aspects of the research conducted in sub-
Saharan Africa in which the genotype main effect plus genotype by 
environment interaction (GGE) biplot was employed for the analysis and 
interpretation of the data. GGE biplot has been found quite effective in 
analyzing genotype × environment interaction, genotype × trait (GT) 
interaction, interpretation of diallel and line × tester data, and evaluation 
of the efficiency of testers in hybrid production. Application of GGE 
biplot to genotype by environment data from several studies has helped 
to identify outstanding varieties, inbreds and hybrids of early and extra-
early maize in terms of yield performance and stability under stress and 
non-stress environments. The use of GT biplot analysis has resulted in 
the identification of ear aspect (EASP), plant aspect (PASP), anthesis-
silking interval (ASI), and number of ears per plant (EPP) as the most 
reliable traits for selection for yield under drought, low-N, high-N and 
well-watered environments. Studies comparing GT with path-coefficient 
analyses revealed that both methods identified EASP, plant height 
(PLHT), and ASI as the most important traits directly contributing to yield 
under drought stress. GT biplot identified EASP, EPP, and Striga damage 
as the most reliable traits for indirect selection for improved grain yield 
under Striga infestation. The biplot graphical analysis allowed visual 
display of the general combining ability (GCA) of the parental inbreds 
and specific combining ability (SCA) of the hybrids used in Griffings 
diallel mating design. In addition, information on the best mating 
partners, identification of proven testers and tester groups, and heterotic 
groups have been provided graphically. The disadvantages of the GGE 
biplot include limited number of entries, only two heterotic groups are 
handled by the method, and only fixed statistical model can be used. 
More attention needs to be focused on test of hypothesis and QTL analyses.  
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INTRODUCTION 

The climatic, edaphic, and management variability in sub-Saharan 
Africa (SSA) is great and too formidable to be dealt with ordinarily. For 
example, the soil variability goes, as it were, from foot-to-foot and it is 
necessary that crops be able to cope with the variation. Similarly, crop 
plants vary a great deal in their response to environmental conditions. 
Therefore, genotype × environment interaction (GEI) has been defined as 
the degree of variation in response of a genotype across environments 
[1]. Genotype × environment interaction has been measured more by 
variation in grain yield than any other trait in crop plants and the 
response of other plant parts is poorly understood. Generally, GEI is of 
two dimensions: magnitudinal and directional. In magnitudinal 
dimension, the relative response of one variety to the other remains the 
same despite the changes in the environment. In directional dimension, 
on the other hand, one variety may be higher yielding than the other in 
some environments and poorer yielding in others. It takes comparison of 
the two varieties to detect this, a definite limitation of most stability 
analytical systems.  

The information obtained from multi-environment trials (METs) can 
be of high importance in Plant Breeding, Genetics and Agronomy by 
providing answers to three main objectives:  

a. accurately calculate and predict performance of a genotype from 
limited data;  

b. examine yield of genotypes and their stability patterns in response to 
the environments; 

c. provide guidance that are very reliable in selecting the best genotypes 
or agronomic treatments suitable for planting at new locations and in 
the coming years [2].  

Observable uniqueness in ensuring the interaction between the 
environment and the genetic make-up is called phenotype. Phenotypes 
could be assessed, observed, estimated, and arranged in groups 
according to features that they have in common. Environmental factors 
may be regarded as locations, growing seasons, years, nitrogen levels, 
rainfall, temperature, all of which could have positive or negative effects 
on genotypes [3]. Wu and O’Malley [4] described two classes of 
environments with detailed differences in their information: micro-
environmental differences that cannot clearly be forecast such as yearly 
differences in drought conditions, rainfall, and level of insect damage; 
and macro-environmental differences which can be forecast, such as 
category of soil, restricted temperatures and management put into 
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practice. According to the authors, the G × E variance can only be 
projected for the macro-environmental state.  

There are difficulties in determining the varietal performance 
evaluated in experiments containing genotypes (G), locations (L), and 
years (Y) due to the genotype × location × year (G × L × Y) interactions not 
being easy to classify [5]. The complications resulting from G × E 
interactions can best be avoided by identification of stable genotypes that 
are adapted across crop production environments. To ensure the 
maintenance of broader adaptation and yield stability, superior 
experimental varieties have been selected based on the performance 
across contrasting environments. For example, the Regional Drought 
Tolerant Early Trials are used as the vehicle for testing, identifying and 
exchanging drought tolerant early (90–95 days) and extra-early (80–85 
days) cultivars and hybrids with broad adaptation to the agro-ecological 
zones of the four partner countries, Mali, Nigeria, Ghana and Benin in 
West Africa (WA). Based on the results of the Regional Trials, outstanding 
varieties are selected and evaluated in farmer participatory on-farm 
trials and demonstrations which are important vehicles for 
demonstrating the effectiveness of new technology to farmers and thus 
are instrumental in the identification, release and commercialization of 
stress tolerant maize varieties and hybrids in the partner countries. The 
trials also offer the National Agricultural Research Systems (NARS) 
partners the opportunity for selecting promising cultivars for 
introgression of favorable alleles into the breeding populations of 
national maize programs for broadening the genetic base. 

Results of METs in WA have demonstrated the existence of GEI [6–10], 
emphasizing the need for extensive testing of cultivars in multiple 
environments over years before decisions are taken on cultivar 
recommendations. However, because of the limited resources of the 
national maize research programs of WA, there has been a need to 
conduct cultivar evaluations in a limited number of environments. To 
achieve this, we re-examined target testing environments in WA for their 
uniqueness as it was believed that some environments could never 
provide unique information, because of similarity to some other 
environments in separating and ranking genotypes without losing 
valuable information on genotypes. Furthermore, it was felt that 
stratification of maize evaluation environments could help improve 
heritability of measured traits, accelerate the rate of genetic gain from 
selection, and strengthen the potential competitiveness for seed 
production and maximize grain yields of farmers [11]. It was therefore 
very important to develop an in-depth understanding of the target agro-
ecologies used for the evaluation of drought tolerant cultivars in WA and 
to determine if it could be subdivided into different mega-environments 
to facilitate a more meaningful cultivar evaluation and recommendation. 
It was believed that selected locations for METs should constitute a 
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sample of environments that adequately cover the range of 
environmental conditions of the target geographical region. 

Furthermore, following the ratification of the protocol on seeds by the 
Heads of States of the Economic Community of West African States 
(ECOWAS) member countries in 2009, the West African Catalogue of 
Plant Species and Varieties (COAFEV) was made available in the sub-
region [12]. The seed catalogue contains the list of varieties whose seeds 
could be produced and commercialized within the territories of the 17 
member countries of ECOWAS and is an aggregate of the varieties 
registered in the national catalogues of the Member States. The catalogue 
offers a unique opportunity for the movement of good quality seeds of 
improved maize varieties and hybrids across the borders of the ECOWAS 
countries for production and marketing. As a result of these new 
developments and the implications of global warming, desertification, 
and recurrent drought in the sub-region, there was a need for a re-
examination of the mega-environments in WA and the identification of 
core testing locations in each of the mega-environments in WA used for 
the evaluation of the three different regional trials in WA. A number of 
studies was therefore conducted to determine the representativeness, 
discriminating ability and the repeatability of the test locations used for 
the evaluation of the DT Regional Early Variety Trials and to identify core 
testing sites to facilitate testing, seed production and commercialization 
of drought tolerant cultivars in WA. Therefore, using the GGE Biplot 
statistical tool, Badu-Apraku et al. [13] examined the mega-environments 
in WA employed for testing the Regional extra-early maturing varieties. 
The test locations Zaria, Ilorin, Ikenne, Ejura, Kita, Babile, Ina, and 
Angaredebou were identified as the core testing sites of the three mega-
environments for testing the Regional Uniform Variety Trials-Extra-early. 
In another study, involving the testing sites for the Regional Early Trials, 
test environments were classified into four mega-environments [14]. 
Four test locations were highly correlated in their ranking of the 
genotypes in group 1, suggesting that a promising early maturing cultivar 
selected in one of these locations in one country will also be suitable for 
production in the other locations within the same mega-environments in 
different countries [14]. Similarly, eight test locations were highly 
correlated in their rankings of the genotypes in group 2 and therefore, a 
promising cultivar identified in one of these locations were likely to be 
adapted to the other locations. It was concluded that selecting a cultivar 
out of these two locations would likely result in varieties adapted to other 
locations within the same mega-environment. The identification of the 
core testing sites was expected to facilitate the selection of high yielding 
and stable cultivars in the four different regional trials of WA [Regional 
Uniform Variety Trial (RUVT)-early, RUVT-extra-early, Drought Tolerant 
(DT) Regional Early and the DT Regional Extra-early variety Trials] and 
seed production and marketing across the countries of WA. The selection 
of suitable breeding and test locations are crucial to the success of a 
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maize breeding program. A test location must be discriminating so that 
genetic differences among genotypes can be easily detected. It is 
important therefore that the test locations are representative of the 
target environments so that selected genotypes would have the desired 
adaptation and would be representative of the target environment as 
well as repeatable so that genotypes selected from year to year will have 
superior performance. According to Yan et al. [15], only test locations 
with high discriminating ability were useful and only those that were 
also representative could be used in selecting superior genotypes. The 
repeatability of genotype ranking across years within test locations was 
also an essential aspect in test location evaluation. Using the GGE Biplot 
method, the GEI of the testing sites of the RUVT early and extra-early 
varieties in West and Central Africa (WCA) were studied and the test 
locations characterized and stratified into mega-environments and core 
testing sites to facilitate efficient and less costly testing of varieties 
[13,14]. On the other hand, the testing sites of the Regional Drought 
Tolerant Trials which were confined to the drought-prone locations in 
the four partner countries of the Drought Tolerant Maize for Africa 
(DTMA) project, namely, Nigeria, Ghana, Benin and Mali had not been 
studied. Therefore, it was believed that information on the 
representativeness, discriminating ability and repeatability of the testing 
sites of the DT Regional Variety Trials in WA would facilitate better 
understanding of the responses of drought tolerant maize genotypes in 
target drought environments and would be invaluable in designing an 
efficient and economic selection strategy for the International Institute of 
Tropical Agriculture (IITA) Maize Breeding Program. However, there was 
limited information on the representativeness, discriminating ability and 
repeatability of the testing sites of the Regional DT Trials which were 
largely in the drought prone locations in the four partner countries of the 
DTMA project, Nigeria, Ghana, Benin and Mali (Table 1). Therefore, 
twelve early maturing maize cultivars were evaluated for 3 years at 16 
locations in WA to determine the representativeness, discriminating 
ability and the repeatability of the testing sites and to identify core 
testing sites using the GGE biplot method [16]. The results revealed that 
Zaria (Nigeria), Nyankpala (Ghana) and Ejura (Ghana) displayed the 
highest discriminating ability (Figure not shown). Two mega-
environments were identified. Bagou, Nyankpala, Bagauda, Ikenne, and 
Mokwa constituted the first mega-environment (ME1) while Ejura, Ina 
and Sotuba represented the second (ME2). It was concluded that the first 
mega-environment would be more useful for evaluating early maize 
genotypes for tolerance to drought than the ME2 because locations in this 
mega-environment were more strongly correlated to Ikenne (managed 
drought stress site). Among the test locations, Bagou and Mokwa were 
found to be closely related to Ikenne in their ranking of the cultivars 
while Zaria was the exact opposite, indicating that Zaria was the least  
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Table 1. Description of test locations used for evaluation of Regional Early-maturing drought tolerant (DT) maize in west Africa between 2009 and 2011.  

Country Location Code Agro-
ecology † 

Latitude Longitude Altitude 
(mm asl) 

Rainfall during the 
growing season 
(mm) 

Years when evaluation was 
conducted¶ 
2009 2010 2011 

Benin Angaradebou AN SS 11°32’ N 3°05’ W 297 1000 x x x 
Benin Bagou BF SS 11°28’ N 2°23’ W 303 1125 x x x 
Benin Ina IN NGS 9°58’ N 2°44’ W 358 900 x x x 
Ghana Ejura EJ FT 7°38’ N 1°37’ E 90 1460 x x  
Ghana Manga MG SS 11°01’ N 0°16’ W 270 718 x x x 
Ghana Nyankpala NY NGS 9°25’ N 0°58’ E 340 800 x x x 
Nigeria Badeggi BD SGS 9°05’ N 6°15’ E 118 1124 x x  
Nigeria Bagauda BG SS 12°01’ N 8°19’ E 520 840 x x x 
Mali Katibougou KB SS 12°50’ N 8009’ W 285 700 x x x 
Nigeria Sabongari SG NGS 12°3’ N 8°32’ E 476 720 x x  
Nigeria Ikenne IK FT 6°53’ N 3°42’ E 60 1200 x x x 
Mali Sotuba ST NGS 12°39’ N 7°55’ W 337 740 x x x 
Nigeria Jibia JB NGS 13°05’ N 7°13’ E 607 600 x x  
Nigeria Mokwa MK SGS 9о18’ N 5о4’ E 457 1100 x x x 
Nigeria Samaru SA NGS 12°12’ N 7°37’ E 550 1040 x x  
Nigeria Zaria ZA NGS 12°00’ N 8°22’ E 640 1120 x x x 

† SGS = southern Guinea savanna; NGS = northern Guinea savanna; FT = Forest-savanna Transitional zone; SS = Sudan savannah; 
¶ “x” marks the year when evaluation was carried out at the location. 
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a 

 
b 

Figure 1. Vector view of the GGE biplot showing (a) representativeness and repeatability of test locations 
in ME 1 (b) the ideal test environments in ME 1 based on their discriminating power and 
representativeness.  
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a 

 

b 

Figure 2. Vector view of the GGE biplot showing (a) representativeness and repeatability of test locations 
in ME 2 (b) the ideal test environments in ME2 based on their discriminating power and 
representativeness. 

suitable for evaluating genotypes for drought tolerance (Figure not 
shown). Nyankpala and Ikenne were identified as the core testing site for 
ME1 (Figure 1b) and Ejura for ME2 (Figure 2b). Ikenne, Nyankpala and 
Ejura had moderately high repeatability and were closer to the average 
environment axis of each mega-environment (Figures 1a and 2a) and 
would be useful for culling unstable genotypes at the multilocation 
testing stage. It was concluded that other sites were less representative 
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and not repeatable and would not be useful for evaluating early maize 
cultivars for drought tolerance.  

Beyond analysis of a MET data where significant GEI is singularly 
partitioned into eigen values in principal component analysis to obtain 
information on stability and adaptability of genotypes, as well as 
discriminativeness and representativeness of the environments, it is 
interesting to note that GGE biplot is very appropriate for the analysis of 
any other data that can cast into a 2-way table. This facilitates the use of 
GGE biplot in graphical analysis of traits relationship and genetic data 
obtained from factorial mating designs as well as QTL studies [17]. 

In the rest of this paper, we address the issue of stability of 
performance by comparing varieties, using different statistical methods. 
Specifically, our objectives are to (i) compare GGE biplot with other 
statistical analytic methods, (ii) determine the effect of genotype × trait 
interaction, (iii) test GGE biplot for analysis of genetic data using diallel 
and line × tester designs, (iv) evaluate the efficiency of testers in hybrid 
production, (v) discuss the strengths and weaknesses of the GGE biplot 
statistical tool, and (vi) give future directions. 

GGE BIPLOT COMPARED WITH OTHER ANALYTICAL METHODS  

Stability studies have allowed researchers to identify broadly adapted 
cultivars for use in breeding programs and have been helpful in 
recommending new varieties to farmers [18]. Different concepts leading 
to different definitions of stability have been proposed over the years 
[19,20]. Lin et al. [19] identified three types of stability concepts: 

Type 1: A genotype is considered stable if it is characterized by small 
among-environment variance. Becker and Léon [20] referred to this as 
static, or biological concept of stability. A stable genotype possesses an 
unchanged performance regardless of any variation of the 
environmental conditions. This concept of stability is useful for 
qualitative traits, disease resistance, or for abiotic stress characters such 
as drought and winter hardiness. Parameters used to quantify this type 
of stability are CVi [21] and genotypic variance across environments (Si

2). 
Type 2: A genotype is considered stable if its response to 

environments is parallel to the mean response of all genotypes in the 
trial. Becker and Léon [20] referred to this as the dynamic or agronomic 
concept of stability. A stable genotype has no deviations from the general 
response to environments and thus permits a predictable response to 
environments. A regression coefficient (bi) [22] and [23] stability variance 
(σ2

i) can be used to measure Type 2 stability. 
Type 3: A genotype is considered stable if the residual mean square 

from its regression model on the environmental index is small. The 
environmental index is the mean yield of all the genotypes in each 
location minus the grand mean of all the genotypes in all locations. Type 
3 is closely related to the dynamic or agronomic stability concept [19]. 
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The methods proposed by [24]) and [25] are examples of Type 3 concept. 
Becker and Léon [20] stated that all stability procedures based on 
quantifying GEI effects belong to the dynamic concept. This includes the 
procedures for partitioning the GEI of Wricke’s [26] ecovalence and 
Shukla’s [23] stability of variance, procedures using the regression 
approach such as those proposed by Finlay and Wilkinson[22], Eberhart 
and Russell [24], and Perkins and Jinks [25] as well as non-parametric 
stability analyses such as rank summation index.  

Lin and Binns [19] proposed Type 4 stability concept based on 
predictable and unpredictable non-genetic variation. The predictable 
component relates to locations while the unpredictable component 
relates to years. These researchers suggested the use of a regression 
approach for the predictable portion and the mean squares for years × 
location interaction for each genotype as a measure of the unpredictable 
variation. 

The procedure involving combined analysis of variance is the earliest 
and the most used analysis method to measure the existence of GEI from 
METs with replicates. In recent times, however, a wide range of methods 
have been proposed to study GEI that were broadly divided into four 
groups: analysis of variance, stability or parametric, qualitative or non-
parametric, and multivariate methods. We will consider three 
multiplicative methods here; that is, cluster analysis, additive main effect 
and multiplicative interaction (AMMI), and genotype and genotype by 
environment interaction (GGE) effects. 

Cluster Analysis. Cluster analysis is a numerical classification 
technique that defines groups of similar individuals. There are two types 
of classification. The first is non-hierarchical classification, which assigns 
each item to a class. The second type is hierarchical classification, which 
groups the individuals into clusters and arranges these into hierarchies 
for the purpose of studying relationships in the data. Comprehensive 
reviews of the applications of cluster analysis to study GEI can be found 
in [19]. The report from cluster analyses by Shaibu et al. [27] revealed the 
genetic diversity among the genotypes and identified genotypes that can 
be selected for hybridization and improvement of maize. 

Additive Main Effects and Multiplicative Interaction (AMMI). 
Stability methods have been used in both univariate and multivariate 
statistics [19]. Among the multivariate methods, the additive main effects 
and multiplicative interaction (AMMI) analysis are widely used for GEI 
investigations. This method has been effective because it captures a large 
portion of the GEI sum of squares, clearly separating the main and 
interaction effects, and often provides meaningful interpretation of data 
to support a breeding program [2]. The AMMI model combines ANOVA 
for the genotype and environment main effects with Principal 
Components Analysis of GEI [28,29]. Therefore, based on the AMMI 
model (IPCA1 and IPCA2) the AMMI stability value (ASV) has been used 
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[30]. The ASV is comparable with the methods used by Shukla [23] and 
Eberhart and Russell [24] for genotype stability [30].  

The AMMI method can be used more effectively to analyze METs than 
ANOVA and PCA. According to Zobel et al. [28], ANOVA fails to detect a 
significant interaction component, PCA fails to identify and separate the 
significant genotype and environment main effects, while linear 
regression models account for only a small portion of the interaction sum 
of squares. The AMMI method takes care of the flaws in these methods 
and is used for three main purposes:  

a. The model diagnosis. AMMI is more appropriate in the initial 
statistical analysis of yield trials, because it provides an analytical 
tool of diagnosing other models as subcases when these are better for 
particular data sets [31].  

b. AMMI clarifies the GEI by summarizing patterns and relationships of 
genotypes and environments [2,28].  

c. It improves the accuracy of yield estimates. Gains have been obtained 
in the accuracy of yield estimates that are equivalent to increasing 
the number of replicates by a factor of two to five [28]. Such gains 
may be used to reduce testing cost by reducing the number of 
replications, increasing the number of treatments (e.g., varieties) in 
the experiments, or improving efficiency in selecting the best 
genotypes. It has proven useful for understanding complex GEI. The 
results can be graphed in a useful biplot that shows both main and 
interaction effects for both the genotypes and environments.  

AMMI combines ANOVA into a single model with additive and 
multiplicative parameters. The model equation is:  

Yij − Yj = λ1Ei1ϒj1 + λ2Ei2ϒj2 + εij (1) 

where Yij is the measured mean of ith genotype in jth environment; Yj is 
the grand mean; λ1 and λ2 are the singular values for PC1 and PC2; Ei1 and 
Ei2 are the PC1 and PC2 scores for genotype i; ϒj1 and ϒj2 are the PC1 and 
PC2 scores for environment j and εij is the error term. 

The combination of ANOVA and PCA in the AMMI model, along with 
prediction assessment, is a valuable approach for understanding GEI and 
obtaining better yield estimates. The interaction is explained in the form 
of a biplot display where PCA scores are plotted against each other 
thereby providing a visual inspection and interpretation of the GEI 
components. Integrating biplot display and genotypic stability statistics 
enables genotypes to be grouped based on similarity of performance 
across diverse environments. Yield-stability statistic (YSi) was also used 
to recommend varieties for commercialization [32]. Kang [32] proposed 
an improved superior stability index (I) that is free from all the aforesaid 
drawbacks. A new approach, known as genotype selection index (GSI), 
was used by taking into consideration the AMMI stability value and mean 
yield for quantification of stability [33].  
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GENOTYPE AND GENOTYPE BY ENVIRONMENT INTERACTION (GGE) 

Yan et al. [34] proposed a methodology known as GGE biplot for 
graphical display of GEI patterns. It allows visual examination of the 
relationships among test environments, genotypes and GEI. It is an 
effective tool for: (i) mega-environment analysis (e.g., “which-won-
where” pattern), where specific genotypes can be recommended to 
specific mega-environments [35,36]; (ii) genotype evaluation (the mean 
performance and stability); and (iii) environmental evaluation (the 
power to discriminate among genotypes in target environments) [37]. 
GGE biplot provides information on genotype main effects and GEI at the 
same time. In contrast to typical multivariate stability analysis methods 
where only GEI is considered, the GGE method considers genotype main 
effects as well. Different researchers [38,39] have used GGE biplot for the 
analysis of GEI and evaluation of maize genotypes. In general, results of 
the studies have shown that in most stability analysis experiments, the 
main effect of environment is high, while variations determined by the 
main effect of genotype and GEI that are recommendable and 
interpretable are low. Since the environment is not a controllable factor 
in the GGE biplot method, genotypic and GEI sources of variation are 
used to obtain more reliable results [34,40]. Because it graphically 
displays GEI effects, the GGE biplot method helps plant breeders to easily 
assess genotypic stability and combinations of genotypic stability and 
yield in different environments. It also allows assessment of the 
relationship between environments and facilitates the re-arrangement of 
target environments in plant breeding programs. GGE biplot weaknesses 
were reported by Akinwale et al. [17] as follows: 

i) it does not put into consideration the complexity of the genetics of 
traits coupled with confounding environmental effects; 

ii) it can only identify two distinct heterotic groups in a genetic study 
where even more exist; 

iii) it cannot estimate genetic variances, covariances, and heritability; 
and 

iv) there is limited literature on its application to molecular data. 

One recent study compared 15 methods of stability analysis using 17 
varieties of maize evaluated in four years with several locations within 
the year for a total of 21 environments [41]. Spearman’s rank correlation 
coefficient was used to rank the varieties (Table 2). Many of the methods 
had no significant correlation with each other (Table 2). For example, CVi 

had rather low significant correlation coefficients with four of the 15 
cases, two positive and two negative. Similarly, most other parameters 
had 5 to 7 significant correlation coefficients with others in the study, 
thereby displaying the specificity in the methods. In the study, however, 
the GGE showed rather consistent pattern. The varieties which were 
farthest from the biplot origin were positioned at the vertexes and were 
the most responsive to environments contained in the sector of each 
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vertex. The polygon of the 17 varieties were under five vertexes, which 
were V4 (TZEE-SRBC5), V9 (TZEE-SRBC5), V15 (EV 8435-SR), V11 
(TZECOMP4C2) and V7 (ACR 95TZE COMP4C3). Varieties and environments 
positioned in the same sector on the graph were not significantly 
different from each other. In this analysis, varieties and environments 
were positioned as follows (Figure 3): 

 

Figure 3. A polygon view of GGE biplot analysis of 17 maize OPVs (V) and 21 environments (E) included in 
a 4-year trial at the Teaching and Research Farm of Obafemi Awolowo University, Ile-Ife, Nigeria. 

V7 (ACR 95TZE COMP4C3), was the highest yielding variety in E22, 
E16, E17 and E15; V11 (TZECOMP4C2), was positioned as the best yielding 
variety in E19 and E18; V15 (EV 8435-SR), was the winning variety in E20, 
E5, E13 and E14; while V4 (TZEE-SRBC5), was positioned as the highest 
yielding variety in environments E1, E10, E9, E2, E3, E9, E11, E7, E6, E8 
and E12 (Figure 3). In the same study, the vector view of the GGE biplot 
revealed that V4 (TZEE-SRBC5), V2 (ACR 90 Pool i6-DT) and V13 (BAG 97 
TZECOMP3x4) were the most stable and high yielding varieties (Figure 
not shown). In addition, the GGE biplot identified the hypothetical ideal 
variety as a small circle on average environment axis and points to 
higher average grain yield variety. Variety V4 (TZEE-SRBC5) occupied 
that position and was, therefore, the ideal and best variety in this study.  
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Table 2. Spearman’s rank correlation coefficients among stability parameters computed by 15 analytical methods for 17 OPV maize varieties evaluated in 21 
environments in a 4-year period at the Teaching and Research Farm of Obafemi Awolowo University, Ile-Ife. 

 Mean S2
i CV(%) ώi σi

2 bi S2
di R2 δi

2 βi Di Pi RSI Si(1) Si2 YSI ASV 

Mean                  

Variance 0.50 *                 

CV(%) −0.32 0.59 *                

ώi 0.12 0.51 * 0.47               

σi
2 0.10 0.49 * 0.44 0.97 **              

bi 0.71 ** 0.81 ** 0.29 0.06 0.03             

S2
di 0.10 0.49 * 0.44 0.97 ** 1.00 ** 0.03            

R2 0.31 0.06 −0.22 −0.78 ** −0.79 ** 0.50 * −0.79 **           

δi
2 0.12 0.51 * 0.47 1.00 ** 0.97 ** 0.06 0.97 ** −0.78 **          

βi 0.71 ** 0.81 ** 0.29 0.06 0.03 1.00 ** 0.03 0.50 * 0.06         

Di 0.99 ** 0.56 * −0.23 0.10 0.08 0.78 ** 0.08 0.37 0.10 0.78 **        

Pi −0.98 ** −0.54 * 0.26 −0.06 −0.03 −0.78 ** −0.03 −0.40 −0.06 −0.78 ** −0.99 **       

RSI −0.88 ** −0.20 0.62 ** 0.05 0.06 −0.42 0.06 −0.33 0.05 −0.42 −0.84 ** 0.83 **      
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Table 2. Cont. 

 Mean S2
i CV(%) ώi σi

2 bi S2
di R2 δi

2 βi Di Pi RSI Si(1) Si2 YSI ASV 

Si(1) 0.17 0.46 0.35 0.28 0.20 0.40 0.20 −0.03 0.28 0.40 0.24 −0.19 0.00     

Si2 0.28 0.46 0.23 0.58 * 0.49 * 0.28 0.49 * −0.36 0.58 * 0.28 0.29 −0.26 −0.16 0.74 **    

YSI −0.58 * −0.02 0.57 * 0.67 ** 0.65 ** −0.41 0.65 ** −0.85 ** 0.67 ** −0.41 −0.58 * 0.62 ** 0.67 ** 0.16 0.29   

ASV 0.10 0.44 0.48 0.78 ** 0.71 ** 0.06 0.71 ** −0.59 * 0.78 ** 0.06 0.08 −0.10 0.08 0.02 0.34 0.46  

I −0.62 ** −0.14 0.51 * 0.36 0.34 −0.44 0.34 −0.63 ** 0.36 −0.44 −0.61 ** 0.59 * 0.72 ** −0.16 −0.01 0.74 ** 0.59 * 

*,** = Significantly different from zero at the 0.05 and 0.01 probability levels, respectively.  

S2
i = Genotype variance; CV = Coefficient of variation; ώi = Ecovalence; σi

2 = Shukla’s stability variance; bi = Regression coefficient; S2
di = Deviation from regression; R2 = Coefficient of determination; δi

2 

= Deviation from adjusted regression; βi = Adjusted regression coefficient; Di = Desirability index; Pi = Superiority index; Si(1) = Mean absolute rank differences; Si2 = Mean rank variances, YSI = Yield 

stability index; ASV = AMMI stability value; and SSI = Superior stability index.  
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Figure 4. The “discriminating power and representativeness” view of GGE biplot based on a genotype × 
environment yield data of 18 early maturing maize cultivars evaluated in 15 locations across West Africa 
between 2006 and 2008. 

Another study was conducted to examine the effect of G×E on the 
performance and stability of 18 early maize cultivars and to identify core 
test sites and mega-environments at 15 locations in five countries of WA 
[14]. Results of the GGE biplot classified the locations into four mega-
environments, regardless of their countries and Kita (KX, lat. 13°05’ N, 
long. 09°25’ W) in Mali was identified as the ideal location, and Zaria (lat. 
13°05’ N, long. 09°25’ W) in Nigeria was close to the ideal location (Figure 
4). In addition, variety 2004 TZE-W Pop STR C4 was identified in the study 
as the ideal cultivar because it had highest grain yield and was the most 
stable cultivar.  

Genotype × Trait Analysis  

Analysis of trait relationship is an important aspect of maize 
improvement. Many important economic traits, such as grain yield, have 
low heritability because they are polygenic in nature. Thus, progress 
from direct selection for such traits is slow. 

The scenario becomes compounded under stress conditions such as 
drought, low soil nitrogen and Striga parasitism which characterize 
maize production environments in sub-Saharan Africa. A better 
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alternative is to consider indirect selection through secondary traits that 
are relatively easier to measure and possess high heritability. Such traits 
can be identified based on analysis of relationship among traits. 
Correlation and regression analyses are the most popular statistics used 
for analysing trait relationships. However, in correlation and simple 
linear regression, relationship between only a pair of traits can be 
considered at a time. More recently, the use of other multivariate 
techniques, such as principal component analysis (PCA), principal 
coordinate analysis (PCoA), cluster and Additive and Multiplicative 
Model Interaction (AMMI) biplot, which analyse more than two traits at a 
time, has been in vogue. However, most of these statistics could not 
identify promising genotypes based on multiple traits. The genotype 
main effect plus genotype by environment interaction (GGE) biplot offers 
genotype by trait (GT) biplot analysis using robust statistical tools. 
Genotype-by-trait (GT) analysis presents the results of trait relationship 
by graphical display of the genetic relationships among traits [42]. It also 
provides information that helps to detect less important (redundant) 
traits and identify those that are appropriate for indirect selection for a 
target trait.  

The GGE biplot model equation for the genotype-by-trait analysis is as 
follows: 

(Yij – μ – βj)/ dj = λ1gi1e1j + λ2gi2e2j + εij (2) 

Where Yij is the genetic value of the combination between inbred i and 
trait j; μ is the mean of all combinations involving trait j; βj is the main 
effect of trait j; λ1 and λ2 are the singular values for PC1 and PC2; gi1 and 
gi2 are the PC1 and PC2 eigenvectors, respectively, for inbred i; e1j and e2j 

are the PC1 and PC2 eigenvectors, respectively, for trait j: dj is the 
phenotypic standard deviation (with mean of zero and standard 
deviation of 1); and εij is the residual of the model associated with the 
combination of Inbred i and trait j. For the GT biplot analysis, the data 
were not transformed (“Transform = 0”) but were standard deviation-
standardized (“Scale = 1”), and trait-centered (“centering = 2”). Therefore, 
the outputs are appropriate for visualizing the relationships among 
genotypes and traits. 

Model II of the GGE biplot is considered the most appropriate for the 
analyses (Yan and Fregeau-Reid [43], Badu-Apraku et al. [44]). In the 
model, data were not transformed (“Transform = 0”), standard-deviation 
standardized (“Scale = 1”) and were trait-centered (“Centering = 2”). The 
trait values were standard deviation-standardized in order to minimize 
the confounding effect that may result from the different units of 
measurement of the traits involved in the analysis. The polygon and 
vector views of the GT biplot were constructed using all measured traits 
and were based on genotype-focused singular value partitioning (“SVP = 
2”), which rendered them appropriate for visualizing the relationships 
among traits. The entry/tester (mean vs stability) views were based on 
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trait-focused singular value partitioning (“SVP = 1”) which makes them 
appropriate for visualizing the relationships among genotypes. In order 
to identify ideal genotypes based on multiple traits graphically, data 
which are normally negatively correlated with target traits especially 
grain yield were redefined in reverse orientation. The re-orientations 
were necessary to ensure that the traits fell on one side of the average 
tester axis (ATC) coordinate, a requirement that had to be met in GGE 
biplot analysis to identify ideal entries across all testers from the 
entry/tester view of the biplots [15]. In addition, equal weights were 
assigned to each trait. Unlike other types of analyses in GGE biplot which 
lack test of significance, GT biplot analysis that assesses reliability of 
secondary traits for indirect selection of a target trait does the analysis at 
a specified probability level and at a stipulated R-square.  

a 

 

Figure 5. A vector view of the genotype × trait biplot displaying most reliable traits for indirect selection 
for yield (inside box) under (a) managed moisture stress (b) well-watered environment (c) low-N 
environments (d) high N environments (e) Striga infestation. YLD/YD = Grain yield; EPP= number of ears 
per plant; ASI = anthesis-silking interval; EASP/EA = Ear aspect; PASP/PA = Plant aspect; EH = Ear height; 
PLHT/PH = Plant height; HC = Husk cover; LS = leaf senescence at 8 WAP; LS2 = leaf senescence at 10 WAP; 
DYS = Days to silking; DYA = Days to anthesis; LDTH = Leaf death score; STRA1 = Striga damage rating at 8 
WAP; STRA2 = Striga damage rating at 10 WAP.   
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Figure 5. Cont.  
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d 

 
e  

 

Figure 5. Cont. 

Based on the use of GT biplot analysis, Badu-Apraku et al. [45] 
identified ear aspect (EASP), plant aspect (PASP), anthesis-silking interval 
(ASI), and number of ears per plant (EPP) as the most reliable traits for 
selection for yield under drought (Figure 5a). The most reliable traits 
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were days to anthesis (DYA), days to silking (DYS), stay green 
characteristic (LDTH), ASI, plant height (PLHT), EPP, EASP, under low-N 
(Figure 5b); PASP, DYA and DYS under well-watered environments 
(Figure 5c) and PLHT, EPP, PASP, and EASP under high-N environments 
(Figure 5d). In the same study, ASI, EPP, EASP, and PASP were identified 
as the most reliable traits for simultaneous selection of drought and low-
N tolerant genotypes. Results reported in another study revealed that GT 
biplot identified EASP, EPP and Striga damage as the most reliable traits 
for indirect selection for improved grain yield under Striga infestation 
(Figure 5e) while EASP, PASP, PLHT and ear height (EHT) were identified 
under Striga-free conditions [46]. 

In order to validate consistency of the results of GT biplot with other 
multivariate techniques such as stepwise multiple regression analysis 
and path coefficient analysis, a study was conducted to compare the 
results of the GT biplot and path analyses by Badu-Apraku et al. [47]. 
Results revealed that both methods identified EASP, PLHT, and ASI as 
important traits directly contributing to yield under drought stress. 
Similarly, Oyekunle and Badu-Apraku [48] reported that the two methods 
identified EHT, EASP and PASP as important traits directly contributing 
to yield under drought. Furthermore, Badu-Apraku et al. [49] reported 
that GT biplot and sequential path analysis had consistent results as the 
two statistical analyses identified EASP as an important secondary trait 
with significant direct effect on yield under artificial Striga infestation, 
although in addition, GT biplot included EPP and Striga damage rating 
among the most reliable traits. On the basis of the results of GT biplot 
analysis of trait association under production stresses in WCA, 
recommendations have been made to reconstitute the traits to be used in 
the base index for selection of genotypes under each stress and combined 
base index for selection for multiple stress tolerance. 

Apart from trait association analysis, GT biplot analysis of genotypes 
also provide graphical assessment, identification and selection of 
genotypes on the basis of single and multiple traits [35,42,50,51]. A 
comprehensive multi-trait selection procedure proposed by Yan and 
Fregeau-Reid [43] called “Multi-trait-Selection Master” of the GGE biplot 
software is a breeder’s tool that combines three selection strategies; 
independent selection, independent culling, and index selection, so that 
all the aspects of variety or parent line selection are taken into 
consideration. In a study with 23 tropical early-maturing maize inbreds, 
GT biplot identified 10 outstanding inbreds in terms of high grain yield 
and Striga resistance, which included TZEI 3, TZEI 2, TZEI 11, and TZEI 15 
using the Multi-trait-Selection Master’ feature of the GGE biplot [46]. 
Graphical analysis of the performance of some early maize inbreds based 
on multiple traits identified TZEI 17, TZEI 3, TZEI 23, and TZEI 13 as the 
closest to the ideal genotype under drought stress, and TZEI 7, TZEI 2, and 
TZEI 11 under low-N conditions (Figure 6a) [45]. Similarly, TZE-W DT STR 
C4 had the best performance based on multiple traits while TZE-W DT 
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STR C4, TZE-Y DT STR C4, Multicob Early DT, and TZE-W DT STR QPM C0 
were the closest to the ideal cultivar when Striga infested among 15 
cultivars tested [39]. Similarly, results of selection of extra-early maize 
inbreds and hybrids under drought stress and low soil N using GGE 
biplot identified inbred TZEEI 6 as the ideal based on multiple traits 
under drought stress and inbreds TZEEI 96 and TZEEI 45 under low-N 
conditions (Figure 6b) [45]. 

a 

 
b 

 

Figure 6. A vector view of genotype-by-trait biplot showing the ranking of the 90 extra-early inbreds based 
on their mean performance (a) across six selected drought tolerance traits. (b) under low soil N conditions. 
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In summary, GT biplot revealed that the most reliable traits for 
selection for yield under drought were EASP, PASP, ASI, and EPP. DYA 
and DYS were the most reliable under well-watered environments. Under 
low-N, most reliable traits were DYA, DYS, LDTH, ASI, PLHT, EPP, EASP, 
and PASP whereas PLHT, EPP, PASP, and EASP were the most reliable 
traits under high-N environments. 

The ASI, EPP, EASP, and PASP were identified as most reliable traits 
for simultaneous selection of drought and low-N tolerant genotypes. 

Analysis of Genetic Data  

Diallel analysis 

Adequate knowledge and understanding of genetic variability, modes 
of inheritance and heterotic response in a germplasm are very crucial for 
determining appropriate methods to employ for improving the genetic 
resources. Backcrossing, inbreeding, hybridization, and the S1 recurrent 
selection method are among breeding strategies used by International 
Institute of Tropical Agriculture (IITA) Maize scientists to develop several 
early and extra-early maturing white and yellow-grained source 
populations, cultivars, and inbred lines. The choice of appropriate 
breeding strategy is dependent on the results of genetic analysis of the 
traits to improve in a set of parents. Genetic analyses are carried out 
using mating designs such as bi-parental progeny analysis, generation 
mean analysis, diallel, North Carolina designs, line × tester, among 
others. The effectiveness of these mating designs in analysing the 
genetics of inheritance of important traits of crops has been tremendous 
but the rigour and complexity involved in the manual mathematical 
computations of genetic parameters and correct interpretations have 
been a great challenge especially to many new generation breeders. The 
GGE biplot graphical approach to analysis of genetic data makes 
computation and interpretation of results very fascinating. Yan and Hunt 
[52] proposed and demonstrated how GGE biplot could be used to 
analyse diallel data and give appropriate interpretations to its results.  

Generally, GGE biplot is suitable for analysis of any form of data that 
can be cast into two-way table. This makes GGE biplot super-adequate in 
analysing data from mating designs that are cross-classification or 
factorial in nature rather than nested design. Examples of such cross-
classification designs are diallel, line × tester and North Carolina Design 
II. The biplot graphical analysis allows visual display of the combining 
abilities (general (GCA) and specific combining ability (SCA)) of each of 
the parents and hybrids used based on Griffings diallel methods. In 
addition, information on the best mating partner, identification of 
proven testers and tester groups and heterotic groups are provided 
graphically.  
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a 

 
b 

 

Figure 7. Vector view of the genotype plus genotype × environment biplot showing the ranking of the 
testers based on their discriminating ability and representativeness under (a) drought-stressed 
environments and (b) artificial Striga infestation. Exact positions of the entries and testers are at the 
beginning of the labels. 
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Figure 8. Biplot based on diallel data of nine early-maturing white inbred lines with varying performance 
across 12 environments; average tester ordination view. 

 

Figure 9. A vector view of genotype plus genotype × environment biplot showing the ranking of testers 
based on their discriminating ability and representativeness across all research environments. 
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Badu-Apraku et al. [53] in a diallel study involving 9 yellow early 
maturing tropical maize inbreds under drought stress, Striga infestation, 
and optimal growing conditions as well as across research environments 
reported that the GCA effects of the inbred lines were of limited 
importance due to the over dominating effects of SCA. Thus, in the study, 
there were no inbreds that had significantly higher GCA than others and 
the lines could not be classified into distinct heterotic groups based on 
GCA and SCA. However, based on the relationship among testers, inbreds 
identified as the closest to the ideal tester were TZEI 17 and TZEI 11 
under drought and TZEI 23 and TZEI 9 under Striga infestation (Figure 
7a,b). In a similar study, thirty-six diallel crosses derived from nine 
tropical early maturing white maize inbreds were evaluated under 
drought, well-watered, Striga-infested, and Striga-free environments in 
Nigeria between 2007 and 2009 and the data collected were subjected to 
GGE biplot analysis [54]. Results revealed preponderance of additive 
gene action over the non-additive, for yield and most stress adaptive 
traits. The GGE biplot analysis revealed that TZEI 4 and TZEI 5 were 
closest to the ideal inbreds in yield performance and stability across the 
test environments. Two heterotic groups were identified; [TZEI 7, TZEI 
19, TZEI 2, TZEI 4] and [TZEI 5, TZEI 3] (Figure 8). Tester TZEI 3 was the 
closest to the ideal tester while Entry TZEI 7 had the highest GCA effects 
across stress environments (Figure 9). 

In summary, analysing diallel data using GGE biplot is very 
fascinating and it provides more genetic information beyond just the 
combining ability of the parents and hybrids. It gives additional 
information on the relationship among parents, identify testers, assess 
efficiency of testers, display relationships among testers, identify tester 
groups, reveals best mating partners, and most importantly, identify 
heterotic groups. These additional information are not readily available 
in conventional analysis of diallel data.  

A major limitation to the use of diallel mating design is that there is a 
limit to the number of parents that can be involved. Results of only a few 
parents can be clearly displayed. As the number of parents to analyse 
increases, the results of GGE biplot become clustered and both entry and 
tester labels overlap and the biplot graphical views appear clumsy. In a 
breeding program where hundreds of inbred lines have to be analyzed, 
diallel analysis using GGE biplot becomes impracticable.  

Line × Tester Analysis  

Because of the shortcomings of diallel design in handling large 
number of parents, line × tester analysis was proposed by Kempthorne 
[55]. This design requires availability of proven testers probably 
identified in previous studies. As appropriate as GGE biplot is in the 
analysis of line × tester data, original journal article wherein line × tester 
analysis is carried out using GGE biplot is very scanty if not unavailable 
possibly because authors and researchers are not aware of the enormous 
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genetic information it provides. However, in the IITA Maize Program, 
GGE biplot has been used for analyzing data from a line × tester study. 
Data were generated from 63 newly developed inbred lines crossed to 
four extra-early elite testers (TZEEI 13, TZEEI 14, TZEEI 21 and TZEEI 29) 
evaluated under multiple stress and stress-free environments. Using GGE 
biplot, an ideal tester could not be identified under stress environments. 
However, testers TZEEI 13 and TZEEI 14 were the closest to the ideal 
tester under nonstress environments (Figure 10) [56]. Inbred TZdEEI 34 
was identified as outstanding in terms of GCA effects under both stress 
and nonstress environments. Testers TZEEI 13, TZEEI 21 and TZEEI 29 
were found to be very efficient across stress environments based on their 
discriminating power while testers TZEEI 21 and TZEEI 29 were the best 
across nonstress environments (Figure 11). 

Challenges encountered with the application of GGE biplot for 
analysing data from line × tester are similar to those of the diallel. 
However, because the number of testers used in line × tester analysis is 
usually less than in diallel (where number of parents is considered as the 
number of testers), the graphical display of the results of line × tester 
study is better than that of diallel. Interpretation of results of line × tester 
is also easier and simpler than that of the diallel. 

North Carolina design II (NCDII) is the third factorial mating design 
that could be analysed using GGE biplot analysis. However, there is no 
report in the literature where GGE biplot has been used for analysis of 
data from NCDII. One reason could be because larger number of parents 
can be accommodated in NCDII compared to the diallel and for better 
organization, males nested within set is considered as a factor in the 
statistical model rather than male factor.  

We recommend that for GGE biplot to have a wider application in 
analysis of genetic as well as agronomic data, the proponents should 
consider incorporating features that will be appropriate for analyses of 
random and mixed model data and data from nested type of mating 
design. 
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a b 

Figure 10. A vector view of the GGE biplot showing the ideal testers based on the discriminating power and representativeness of the testers across (a) 
multiple stress and (b) nonstress environments. Genotype names (in red lettering) preceded by T means testers.
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a b 

Figure 11. Vector view of the GGE biplot showing the performance of the inbred lines (GCA) across the four testers across (a) stress and (b) nonstress 
environments. Genotype names (in blue lettering) preceded by “L” means lines and genotype names (in red lettering) preceded by T means testers. 
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Evaluation of the Efficiency of Testers in Hybrid Production 

An important prerequisite for the development of high-yielding 
commercial hybrids is the availability of efficient testers, which could 
successfully discriminate, classify inbred lines into appropriate heterotic 
groups, and combine well with other inbred lines, open pollinated 
varieties or hybrids. An effective tester should be able to rank inbred 
lines correctly for performance in hybrid combinations and increase the 
differences between testcrosses for efficient discrimination [57]. 
Furthermore, such testers must have improved agronomic 
characteristics, resistance to diseases and tolerance/resistance to 
prevailing biotic and abiotic stresses such as drought, low-N and Striga. 
Assessment of the efficiency of testers is crucial for the identification of 
suitable genotypes for the development of productive hybrids and 
ensuring efficient utilization of resources. Therefore, the choice of 
proven testers is an important factor that determines progress made in 
maize hybrid development programs. At the initial stage of hybrid 
development in the early (90–95 days to physiological maturity) and 
extra-early (80–85 days to physiological maturity) maturing groups at 
IITA, proven testers were not available in the tropical germplasm. 
Therefore, the testers from the late maturity group (120 days to 
physiological maturity) in the temperate germplasm such as Mo17 and 
B73 were used. However, the results of crosses of tropical lines with 
temperate testers were not producing desirable results. After a while, 
testers were identified among the late/intermediate maize germplasm 
which were adopted for early and extra-early maize germplasm [58]. 
Over the years, several testers have been developed in the early and 
extra-early maturity group to facilitate the development of superior 
hybrids for SSA. This has necessitated identification of a few efficient 
testers for use in classifying the available inbred lines into heterotic 
groups as well as inbred lines for the development of outstanding 
commercial hybrids for production in SSA. 

The GGE biplot tool has the potential for identifying efficient testers 
even though its use for such analysis has not been adequately explored. 
Several early maturing inbred lines, including TZEI 10, TZEI 17, TZE 23, 
TZEI 129 and ENT 13 have been identified as potential testers in the IITA 
Maize Improvement Program (MIP) using the GGE biplot statistical tool. 
The GGE biplot has been used to identify the most efficient testers among 
the five inbred lines. As described by Akinwale et al. [17] and Yan [59], 
the efficiency of a tester (testers were used to replace environments) is 
determined by the relationship among the testers and the length of the 
tester vector. The smaller the angle between any two testers, the more 
closely related the testers are while testers with longer vectors show high 
discriminating power or its ability to assess the grain yield of the crosses. 
Badu-Apraku et al. [53] evaluated nine tropical early maturing maize 
inbreds in diallel crosses under drought stress, Striga infestation, and in 
optimal growing conditions to examine the combining abilities and 
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heterotic patterns and identify appropriate testers using the GGE biplot 
tool. Inbred TZEI 17 was identified as the best tester under drought, TZEI 
23 and TZEI 9 under artificial Striga infestation, and TZEI 13 across 
growing conditions. In another study, Annor et al. [60] identified inbreds 
TZEI 23 and TZEI 17 as the most efficient testers in grouping tropical 
early yellow maize inbreds (Figure 12) and were therefore recommended 
for use in hybrid development programs in SSA. In a more recent study, 
Badu-Apraku and Akinwale [56] identified extra-early inbred testers 
TZEEI 13, TZEEI 21 and TZEEI 29 as the most efficient across drought and 
Striga-infested environments and TZEEI 21 and TZEEI 29 across 
nonstress environments using the GGE biplot (Figure 10). Similarly, in 
studies conducted by Adewale (unpublished, 2019) using the GGE biplot, 
the inbred testers TZdEI 352 and TZEI 18 were identified as the most 
efficient across drought and Striga-infested environments and were 
therefore recommended for classifying early tropical white maize inbred 
lines which are yet to be field-tested and for the development of 
productive hybrids in the sub-region. 

 

Figure 12. A vector view of genotype main effect plus genotype by environment (GGE) biplot showing the 
discriminating power and representativeness of the testers across 17 environments in Nigeria from 2014 
to 2016. 

Strengths and Weaknesses of the GGE Biplot  
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The GGE biplot is a superior data-visualization tool widely used in 
several major areas of agronomy, plant breeding and for analysis in 
genetic studies involving GEI, test location evaluation, genotype 
evaluation, mega-environment investigation and identification of 
parental inbreds for hybrid development [61]. This tool allows 
researchers to graphically extract and utilize information from METs 
data and other types of two-way data [35]. However, the full potential 
and shortcomings of this powerful tool are not completely understood by 
breeders, geneticists, agronomists, ecologists, entomologists and 
pathologists. The limited use of this tool could be attributed to lack of 
understanding of its potential capability on the part of many researchers. 
Furthermore, the major weaknesses as well as potential useful areas of 
application of this tool are not easily realized by users. For instance, 
nearly all analysis from GGE biplot usually lack discrete statistical test of 
significance since its results are only graphically displayed. 
Consequently, Yan [62] indicated that the GGE biplot is preferably used in 
generating hypothesis rather than for making decisions while Yan and 
Ma [63] presented the theoretical and fundamental basis for appropriate 
use of GGE biplot. Thus, further evaluation of the theoretical basis and 
applied results of the software as well as critiquing of the results from 
the analysis and implications relative to other statistical tools is crucial. 
Yang et al. [64], in evaluating and critiquing the use of the GGE biplot, 
recommended using bootstrap procedure for testing significance of the G 
× E biplot pattern. Contrarily, Yan et al. [65] reported that the complex 
bootstrap method is inadequate for the test of significance of biplot 
results. 

GGE biplot was primarily developed for the analysis of complex GEI. 
After analysis of variance has showed significant mean squares for GEI, 
the GGE biplot complements the results, by graphically displaying the 
nature of the interactions. The introduction of the concept of crossover 
interaction and GGE biplot has increasingly been used in GEI data 
analysis in agriculture [34,46,66]. The GGE biplot statistical tool has been 
effectively used in identifying outstanding genotypes, assessing pairs of 
genotypes in specific environments and detecting the most appropriate 
test environments (those that possess the highest ability to discriminate 
among genotypes and are most representative of all test environments) 
[15,16,45,56,59]. Yan et al. [34] further emphasized that GGE biplot is 
more logical and biological than AMMI in explaining the PC1 score, 
which indicates genotypic effects rather than additive main effects. Using 
the GGE biplot tool, Badu-Apraku et al. [10] and Badu-Apraku and Lum 
[67] identified early maturing maize cultivars that were suitable for 
Striga-infested and Striga-free environments and determined their 
stability performance across environments. Similarly, Oyekunle et al. 
[68] used the GGE biplot analysis to assess the performance of early-
maturing maize hybrids and identified ideal test locations in West Africa. 
Results of the study showed that Minjibir (Nigeria) and Nyankpala 
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(Ghana) were the most discriminating and representative locations and 
were declared as the ideal testing sites for the respective national maize 
programs of West African countries. Hybrids EWH-29, EWH-8, and EWH-
30 were found to be the most stable in both countries, whereas EWH-26 
and EWH-32 were the most stable hybrids only in Ghana. 

The genotype-by-trait (GT) analysis component of the GGE biplot 
incorporates some features of AMMI, joint regression, as well as genetic 
correlation in data analysis, making it excellent compared with other 
multivariate approaches. Furthermore, multivariate analytical methods 
such as correlation, multiple regression, path analysis [69], factor 
analysis and cluster models have the demerit of not being efficient in 
identifying genotypes with certain desirable traits that could be used in a 
breeding program. GT analysis also gives information on the suitability 
of cultivars for production as well as information that help to identify 
redundant traits and detect those that are useful for indirect selection for 
a target trait.  

Using GT biplot, Badu-Apraku and Akinwale [39] investigated inter-
trait relationships under Striga infestation and identified EPP, Striga 
damage at 8 and 10 weeks after planting and ear aspect as useful 
selection indices for Striga resistance. In another study, sequential path 
analysis identified EASP as the only trait having significant direct effect 
on yield under Striga infestation [49] whereas GGE biplot revealed EASP, 
EPP and Striga damage as the most reliable secondary traits. The authors 
established that EASP should be incorporated in the base index for 
selecting for improved grain yield of extra-early maturing maize under 
Striga infestation, while the number of emerged Striga plants should be 
excluded. 

Breeders focus more attention on estimating genetic parameters since 
they increase the effectiveness of predicting gains from selection for the 
genetic enhancement of crop cultivars. GGE biplot has been extensively 
employed in combining ability analysis and identification of heterotic 
patterns using diallel data [35,53] and line × tester data [56]. Badu-
Apraku and Akinwale [56] used the GGE biplot tool to determine the 
combining ability effects, identify distinct heterotic groups and efficient 
testers in a line × tester study. The results obtained revealed close 
correspondence in the combining ability and patterns of grouping of the 
lines with that of the conventional line × tester mating design, thus 
validating the GGE biplot as a reliable statistical tool for evaluating line × 
tester data. 

Despite the numerous strengths of GGE biplot analysis, some 
weaknesses still exist. The major shortcoming of GGE biplot in the 
analysis of trait relationships is its insensitivity to multi-collinearity and 
spurious correlations when used to identify reliable traits that could be 
employed for indirect selection for a target trait. This is because GGE 
biplot largely identifies reliable traits based on genetic correlations 
among traits, the traits that are highly correlated are displayed as 
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reliable, without considering which of the traits contribute indirectly to 
the target trait through other traits. This weakness was clearly revealed 
when the results of interrelationships among traits using GT biplot and 
sequential path analysis were compared [46].  

In its application to analyze genetic data, classification of genotypes 
into heterotic groups has been based on the SCA effects only, which is 
represented by the projections of the entry vectors onto the ATC 
ordinate. In a situation where the GCA is preponderant over the SCA, 
classifying genotypes into heterotic groups based on SCA alone, as 
analysed by GGE biplot, will be grossly inefficient and the groups will not 
be distinct. 

Another major challenge with diallel analysis using GGE biplot is that 
only two heterotic groups can be identified even when more groups are 
present. Other inbreds that cannot fit into the two groups become 
unclassified [17]. Furthermore, the proportion of parents classified are 
smaller relative to the total number of parents involved in the study. This 
is particularly of great concern especially in a standard breeding 
program that has committed considerable time, energy, efforts, land, 
funds and other resources to produce several inbred lines only to find 
out that just a few can be classified into heterotic groups for the purpose 
of hybrid development. 

Another major shortcoming of GGE biplot analysis of genetic data 
such as diallel is that only fixed statistical model is applied. When 
genotype is considered as a random model where the experimenter is 
interested in computing genetic variances and heritability estimates, 
application of GGE biplot in the analysis of such data becomes limiting 
since the biplot has not been designed to display these parameter 
estimates graphically. Furthermore, GGE biplot tool has not been used in 
the analysis of data generated using North Carolina Designs I, II, and III 
and some other genetic designs. The use of GGE biplot in the analysis of 
the mating designs could facilitate a better understanding of the mating 
designs.  

CONCLUSIONS AND FUTURE DIRECTIONS 

GGE biplot is the most widely used multivariate analytical tool in the 
analysis of plant breeding data. The interpretation of GGE biplot analysis 
of genetic data is more comprehensive with wider applicability than the 
conventional statistical methods. Nevertheless, the lack of discrete 
statistical test of significance in its analysis has sometimes made the 
reliability of its results debatable by researchers. However, its results 
have been found to be consistent with that of ANOVA, correlation, 
regression and multivariate statistical methods. GGE biplot has been 
extensively used in the tropical early and extra-early maize 
improvement program and its use has facilitated rapid progress in 
population improvement, variety and hybrid development in the IITA 
maize program. The statistical tool still possesses much more potentials 
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that are yet to be fully explored especially for the tropical maize 
germplasm.  
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