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ABSTRACT 

Genetically correlated traits can be used for improving predictive abilities 
of genomic predictions including several traits in multi-trait models. Here, 
the wheat quality traits thousand-kernel weight, grain protein content, 
Zeleny sedimentation, and falling number were phenotyped in 1152 
advanced winter wheat lines from four cycles of a commercial breeding 
program. Multi-trait and trait-assisted genomic prediction models 
including two or four traits were studied and compared with single-trait 
models. In the trait-assisted genomic predictions, breeding values of the 
trait of interest were predicted for lines that had been phenotyped for 
additional traits. Predictive abilities of single-trait models ranged from 0.5 
for thousand-kernel weight to 0.65 for falling number based on 10-fold 
cross-validations. Predictive abilities were in most cases not significantly 
different between single- and multi-trait models, when no phenotypic data 
was included for lines in the validation set. However, predictive abilities 
for grain protein content increased when using trait-assisted models, 
where the phenotypic data for Zeleny sedimentation or falling number 
were available for the lines in the validation set. The trait-assisted models 
also resulted in increased predictive abilities for Zeleny sedimentation, 
when phenotypic data for grain protein content was included. The latter 
situation could be relevant for breeding programs for improving wheat 
quality. 
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ABBREVIATIONS 

GBLUP, Genomic Best Linear Unbiased Prediction; GEBVs, genomic 
estimated breeding values; LSO, leave-set-out; MT, multi-trait; ST,  
single-trait; TA, trait-assisted; TKW, thousand-kernel weight 

INTRODUCTION 

Genomic prediction is a relatively new technology in plant breeding 
that can be used for increasing the rate of genetic gain [1]. Genomic 
prediction has so far mainly been studied using single-trait (ST) models. 
However, in plant breeding programs, selection of lines is typically based 
on several traits. Traits might be genetically correlated due to pleiotropy 
or linkage between QTL influencing the traits. Hence, phenotypic data of 
correlated traits recorded in breeding programs might be better utilized if 
they are combined in multi-trait (MT) models for improved prediction 
accuracies of genomic estimated breeding values (GEBVs) [2].  

For many traits, it is challenging to phenotype large numbers of lines 
at early generations due to shortage of grain quantities. Lines phenotyped 
for all traits might be used as training set to predict breeding values for 
the same traits in a breeding set of lines that have not been phenotyped. 
Alternatively, the lines of the breeding set might also be phenotyped for 
certain traits and used for prediction of breeding values for unphenotyped 
traits in the same lines. The latter approach, so-called trait-assisted (TA) 
genomic selection, significantly increased prediction accuracy of biomass 
yield in sorghum compared to ST or MT genomic selection [3]. 

A simulation study showed that predictive accuracies could be 
increased for a low heritability trait when a correlated, high heritability 
trait was included in MT models. When the genetic correlation between 
the traits were increased, the predictive accuracy of the low heritability 
trait also increased [2]. However, several studies based on empirical wheat 
data have reported that MT models often did not perform better than ST 
models [4–6]. In MT models, a large number of parameters has to be 
estimated, but these estimates might not be sufficiently accurate, when 
based on the relatively small datasets used in most studies [7]. On the other 
hand, TA genomic selection could improve predictions compared to ST or 
MT models. Here, breeding values of the trait of interest were predicted 
for lines that had been phenotyped for correlated traits [4,6,8].  

In the present study, the four quality traits thousand-kernel weight 
(TKW), grain protein content, Zeleny sedimentation, and falling number 
were studied. TKW is an important grain yield component that can be 
correlated with several quality traits [9]. Grain protein content is typically 
positively correlated with other quality traits, because the majority of 
wheat grain protein are gluten proteins [10]. Gluten content and quality is 
essential for baking quality of wheat. When wheat flour is mixed with 
water, gluten proteins form a network that gives the dough viscoelastic 
properties and enables it to rise by retaining CO2 that is produced during 

https://doi.org/10.20900/cbgg20190010


 
Crop Breeding, Genetics and Genomics 3 of 15 

Crop Breed Genet Genom. 2019;1:e1900010. https://doi.org/10.20900/cbgg20190010 

fermentation [11]. The Zeleny sedimentation test is a relatively quick and 
cheap method that can be used for estimating the content and strength of 
gluten in wheat flour [12,13]. Falling number is an indirect measure of α-
amylase activity. The α-amylase enzymes break down starch into 
fermentable sugar. A very low or a very high falling number can both 
result in inferior bread textures and small loaf volumes [14,15].  

The aim of the present study was to evaluate ST, MT, and TA models for 
genomic prediction of wheat quality traits using advanced lines from a 
commercial breeding program.  

MATERIALS AND METHODS 

Plant Material 

In this study, 1152 F6 winter wheat lines from four different breeding 
cycles (set2014–set2017) of the plant breeding company Nordic Seed A/S 
(Holeby, Denmark) were used. The number of lines included from each 
breeding cycle was 321 in set2014, 314 in set2015, 159 in set2016, and 358 
in set2017. A 9.9 m2 plot was grown for each line using standard 
agricultural practices at Lolland in Denmark. Each line was grown 
unreplicated in one year at one location.  

Phenotyping 

Grain or flour samples of each line were phenotyped for the quality 
traits TKW, grain protein content, Zeleny sedimentation, and falling 
number (Supplementary Table S1) as described in [16]. Briefly, TKW was 
determined by weighing a small seed sample and counting the number of 
seeds using image analysis, grain protein content was determined by near-
infrared spectroscopy, and Zeleny sedimentation and falling number were 
determined following the international standard methods (ISO 5529 and 
ISO 3093, respectively). 

Genotyping 

DNA was extracted from leaves of two-week old seedlings based on a 
modified CTAB method [17]. TraitGenetics (Gatersleben, Germany) 
performed the genotyping using the 15K Illumina Infinium iSelect HD 
Custom Genotyping BeadChip technology [18]. In total, 11,058 SNPs with 
minor allele frequency of more than 1% and less than 10% missing values 
were included in the analysis (Supplementary Table S2). 

Statistical Analysis 

The following Genomic Best Linear Unbiased Prediction (GBLUP) model 
was used for ST genomic predictions: 

y = Xb + Zu + e (1) 

where y is a vector of phenotypes, X and Z are design matrices, b is a vector 
of fixed effects, u is a vector of additive genetic effects of the lines (u ∼ 
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N(0,G𝝈𝝈𝒈𝒈𝟐𝟐), where G is a G-matrix and 𝝈𝝈𝒈𝒈𝟐𝟐  is additive genetic variance), and 
e is a vector of residual effects (e ∼ N(0,I𝝈𝝈𝒆𝒆𝟐𝟐), where I is an identity matrix 
and 𝝈𝝈𝒆𝒆𝟐𝟐 is residual variance). The effects of set and year were confounded 
and were considered as a fixed effect. 

The first method proposed by [19] was used for calculating the G-matrix: 

𝑮𝑮 =  
𝒁𝒁𝒁𝒁′

2∑𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)
 (2) 

where pi is the minor allele frequency of ith SNP and Z = M − P. M is a matrix 
with SNP alleles coded as 1, 0, −1, and P is a matrix containing minor allele 
frequencies of SNP i calculated as 2(pi − 0.5). Missing genotypes were set to 
0 in the Z matrix. 

The DMU software package was used for REML estimation of variance 
components and model effects for the GBLUP models [20]. Narrow-sense 
genomic heritabilities were calculated based on records of single plots: 

ℎ2 =  
𝑑𝑑(𝑮𝑮)𝜎𝜎𝑔𝑔2

𝑑𝑑(𝑮𝑮)𝜎𝜎𝑔𝑔2 + 𝜎𝜎𝑒𝑒2
 (3) 

where d(G) is the average of the diagonal elements of the G-matrix, 𝜎𝜎𝑔𝑔2 is 
additive genetic variance, and 𝜎𝜎𝑒𝑒2 is residual variance. 

The following Bayesian SNP-BLUP model was used for genomic 
predictions: 

y = Xb + ZIIuII + e (4) 

where ZII is a matrix of SNP alleles coded as 0, 1, 2, and uII is a vector of 
additive genetic SNP effects.  

SNP effects and residual effects were assigned normal prior 
distributions. SNP effect variance, residual variance and fixed effects were 
assigned flat prior distributions. Markov Chain Monte Carlo with length of 
100,000 cycles including 30,000 burn-in cycles were used for estimation of 
model parameters. Posterior means were computed using pbayz in the 
Bayz software package [21], and the CODA package in R was used for 
checking for convergence to the posterior distribution of all model 
parameters [22]. 

Frequentist and Bayesian MT models were used for two different 
purposes. First, MT models were used to study the genetic correlations 
between a trait recorded in each of the four breeding sets by considering 
the records from each set as four different traits. Secondly, MT models and 
TA models were used for genomic prediction of the quality traits, and two 
or four of the quality traits were included in the same model. Here the 
model is shown for two traits: 

�
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where �𝒚𝒚𝟏𝟏𝒚𝒚𝟐𝟐� is a vector with phenotypes of trait 1 and trait 2, �𝒖𝒖𝟏𝟏𝒖𝒖𝟐𝟐� ∼ N(0, 

G ⊗ H) with variance-covariance matrix H = � 𝜎𝜎𝑔𝑔1
2

𝜎𝜎𝑔𝑔12
2

𝜎𝜎𝑔𝑔12
2

𝜎𝜎𝑔𝑔2
2 �, and �𝒆𝒆𝟏𝟏𝒆𝒆𝟐𝟐� ∼ N(0, 

I ⊗ R) with residual variance-covariance matrix R = � 𝜎𝜎𝑒𝑒1
2
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Residuals were correlated, when records of the included quality traits 
were based on the same plot.  

When considering traits recorded in sets, residuals were assumed to be 
uncorrelated. 

In the Bayesian MT models, �𝒖𝒖𝟏𝟏𝒖𝒖𝟐𝟐� and �𝒆𝒆𝟏𝟏𝒆𝒆𝟐𝟐� were assigned normal prior 

distributions and variance-covariance matrix H and R, respectively. 
Two cross-validation strategies were used for evaluating the predictive 

abilities of the models used for genomic predictions, where one, two, or 
four of the quality traits were included: 

For the 10-fold cross-validations, the wheat lines were randomly 
divided into 10 folds of equal size. GEBVs of the lines in each fold were 
predicted using the lines of the remaining folds as training set.  

For the leave-set-out (LSO) cross-validations, GEBVs of the lines in each 
breeding cycle were predicted using lines from the remaining breeding 
cycles as training set. 

The full dataset was used for estimation of variance components in 
order to obtain as accurate estimates as possible. Predictive abilities were 
determined as correlation between phenotypes corrected for fixed effects 
and GEBVs. The theoretical maximum for this correlation is the square 
root of heritability [23]. 

In the MT models, the phenotypic data of the lines in the validation set 
was masked for all traits when predicting GEBVs. In the TA models, the 
phenotypic data was masked only for one trait in the validation set, and 
the phenotypic data of the remaining trait(s) were included for all lines.  

RESULTS 

Phenotyping, Genotyping and Trait Correlations 

In total, 1152 winter wheat lines from four different breeding cycles, 
set2014–set2017, were phenotyped for the quality traits Zeleny 
sedimentation, grain protein content, TKW, and falling number (Table 1). 
Estimates of narrow-sense genomic heritabilities, h2, for plot records 
ranged from 0.51 for grain protein content to 0.58 for falling number.  

Table 1. Phenotypic data and narrow-sense genomic heritabilities (h2) based on ST GBLUP models. 

Trait Mean Range Coefficent of variation (%) h2 

Zeleny sedimentation (mL) 24.6 8.0–64.0 38.8 0.57 ± 0.04 
Grain protein content (%) 9.7 7.5–13.5 14.4 0.51 ± 0.04 
Thousand-kernel weight (g) 53.6 40.8–63.7 6.6 0.52 ± 0.04 
Falling number (s) 240.0 62.0–391.0 27.2 0.58 ± 0.04 

The principal component analysis of the G-matrix based on all 1152 
lines, showed that the lines of each breeding set was not clearly separated 
from each other (Figure 1). The first principal component explained 27.4% 
of the variance, and the second principal component explained 13.7%.  
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Figure 1. Principal component analysis of the G-matrix based on all 1152 lines from the four breeding cycles, 
set2014–set2017. 

The genetic and environmental correlations between the traits are 
shown in Table 2. Grain protein content and Zeleny sedimentation were 
positively correlated both genetically and environmentally. Grain protein 
content was also genetically correlated with falling number, and the 
environmental correlation between the two traits was close to zero. 
Falling number had a negative genetic correlation with TKW and nearly 
no environmental correlation.  

Table 2. Correlations between the traits Zeleny sedimentation, grain protein content, thousand-kernel 
weight, and falling number. Genetic correlations are shown below the diagonal, and the environmental 
correlations are shown above the diagonal. 

Trait Zeleny Protein TKW Falling No. 
Zeleny 1.00 0.31 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 
Protein 0.30 ± 0.03 1.00 0.04 ± 0.03 −0.04 ± 0.03 
TKW 0.06 ± 0.03 0.03 ± 0.03 1.00 −0.06 ± 0.03 
Falling No. 0.08 ± 0.03 0.30 ± 0.03 −0.28 ± 0.03 1.00 

MT models, where a trait recorded in each of the four breeding sets was 
considered as four different traits, showed that the estimates of the genetic 
correlations between the traits of each set varied considerably (Table 3). 
However, the standard errors of the correlations were quite large, 
especially for grain protein content. For grain protein content and for TKW, 
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the genetic correlations were close to 0 or even slightly negative between 
some of the sets. For Zeleny sedimentation and for falling number, the 
genetic correlations were positive between all sets, and the correlations 
were relativity high in most cases.  

Table 3. Genetic correlations (±standard errors) between the traits of each breeding set. 

Zeleny 
sedimentation 

Set 
2014 

Set 
2015 

Set 
2016 

Set 
2017 

Grain protein 
content 

Set 
2014 

Set 
2015 

Set 
2016 

Set 
2017 

Set2014 1.00    Set2014 1.00    

Set2015 
0.92 
± 0.08 

1.00   Set2015 
0.38 
± 0.22 

1.00   

Set2016 
0.87 
± 0.14 

0.93 
± 0.12 

1.00  Set2016 
0.47 
± 0.35 

−0.04 
± 0.28 

1.00  

Set2017 
0.31 
± 0.18 

0.59 
± 0.16 

0.73 
± 0.20 

1.00 Set2017 
0.24 
± 0.25 

0.04 
± 0.20 

0.12 
± 0.32 

1.00 

Thousand-kernel 
weight 

Set 
2014 

Set 
2015 

Set 
2016 

Set 
2017 

Falling  
number 

Set 
2014 

Set 
2015 

Set 
2016 

Set 
2017 

Set2014 1.00    Set2014 1.00    

Set2015 
0.82 
± 0.12 

1.00   Set2015 
0.84 
± 0.11 

1.00   

Set2016 
0.61 
± 0.21 

0.79 
± 0.17 

1.00  Set2016 
0.96 
± 0.11 

0.72 
± 0.16 

1.00  

Set2017 
−0.13 
± 0.23 

0.40 
± 0.20 

0.07 
± 0.31 

1.00 Set2017 
0.46 
± 0.17 

0.57 
± 0.17 

0.55 
± 0.20 

1.00 

Single-Trait, Multi-Trait, and Trait-Assisted Genomic Predictions 

For all traits, predictive abilities of ST models were 0.5 or higher based 
on 10-fold cross-validations (Figure 2). Based on the LSO cross-validations, 
predictive abilities were lowest for grain protein content (0.13) and highest 
for Zeleny sedimentation and falling number (0.49). The decrease in 
predictive ability when comparing the 10-fold and LSO cross-validations 
were larger for grain protein content and TKW than for Zeleny 
sedimentation and falling number.  

https://doi.org/10.20900/cbgg20190010


 
Crop Breeding, Genetics and Genomics 8 of 15 

Crop Breed Genet Genom. 2019;1:e1900010. https://doi.org/10.20900/cbgg20190010 

 

Figure 2. Predictive abilities of single-trait, multi-trait, and trait-assisted GBLUP (green) and Bayesian (blue) 
models. In the multi-trait models, all four quality traits were included, and the phenotypes were masked in 
the validation set. In the trait-assisted models, the phenotypes of three traits were known in the validation 
set, and the fourth trait was masked. The square root of the narrow-sense heritabilities (maximum 
predictive ability) are shown as red lines. (A) 10-fold cross-validation, (B) Leave-Set-Out cross-validation.  

Using GBLUP MT models, where the four quality traits were all included, 
resulted in similar predictive abilities for all traits compared to the ST 
models (Figure 2). For grain protein content, the predictive ability was 
improved when using the TA model based on the LSO cross-validations 
(0.15 for MT to 0.26 for TA). Predictive abilities of the ST, MT, and TA 
Bayesian models were all similar to the GBLUP models. 
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Figure 3. Predictive abilities of single-trait, two-trait, and trait-assisted GBLUP (green) and Bayesian (blue) 
models. In the two-trait models, the phenotypes of both traits were masked in the validation set. In the trait-
assisted models, the phenotypes of one trait were known in the validation set, and the second trait was 
masked. The square root of the narrow-sense heritabilities (maximum predictive ability) are shown as red 
lines. (A) 10-fold cross-validation, (B) Leave-Set-Out cross-validation.  

The four quality traits were also studied pairwise in two-trait models 
(Figure 3). There were no significance differences in predictive abilities 
between the two-trait models and the ST models. However, predictive 
abilities for grain protein content were improved when either falling 
number or Zeleny sedimentation was included in the TA model (0.13 to 
0.17 or 0.23, respectively, based on GBLUP, LSO cross-validations). 
Furthermore, predictive abilities for Zeleny sedimentation could be 
improved when grain protein content was included in the TA model 
compared to the predictive abilities of the ST and MT GBLUP model (0.49 
to 0.54, LSO cross-validations).  

https://doi.org/10.20900/cbgg20190010
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DISCUSSION 

The narrow sense genomic heritabilities of the four quality traits were 
lower than in a previous study using fewer lines and fewer breeding cycles 
[16]. This could indicate that environmental effects and G × E interactions 
have significant effects on the traits. The gain in predictive ability of MT 
models compared with ST models is expected to be highest for low 
heritability traits that are modelled together with traits that have high 
heritabilities and that are highly genetically correlated [2]. Ideally, the 
genetic and environmental correlations should be high and have opposite 
signs in order to have large gains in accuracy from using MT models [7]. 
Thus, MT models were not advantageous to use for the traits studied here. 

The standard errors of the genetic correlations in Table 3 were quite 
large, so a larger dataset would most likely be needed for more accurate 
estimates of the correlations, and ideally, the lines should be replicated 
across years or sets. The lowest genetic correlations were for set2017. This 
could likely be due to the weather in the summer of 2017. The year 2017 
had the wettest summer since 2011, the summer with the fewest hours of 
sunshine since 2000, and the lowest maximum temperature since 1874 
[24]. The results of Table 3 indicate that the traits can be strongly affected 
by environmental effects and G × E interactions, and underline the 
importance of multi-environmental trials in breeding programs. Based on 
data from 32 years of official variety trials in Germany, [10] reported that 
G × E interactions contributed to the phenotypic variation of quality traits 
and of grain yield. For grain yield, additive genetics effects accounted only 
for a small part of the phenotypic variation compared to the quality traits. 
Predictive abilities for grain yield might be improved when G × E 
interactions are modelled based on data from multiple environments 
[25,26]. If phenotypic data from several locations and years are available, 
outlier environments or breeding cycles could be excluded from the 
training set in order to increase predictive abilities [27]. However, correct 
identification of such outliers could be challenging when predicting GEBVs 
of lines in new breeding cycles.  

In agreement with previous studies, predictive abilities of the genomic 
prediction models were in all cases significantly lower based on LSO cross-
validations than based on 10-fold cross-validations (Figure 2 andFigure 3). 
This could be due to a lower number of lines in the training set, G×E 
interactions, and reduced genetic relationships between training and 
validation sets [16]. The decrease in predictive ability when comparing the 
two cross-validation strategies were largest for grain protein content and 
for TKW. This is in agreement with the low genetic correlations between 
the sets for protein content and for TKW and indicates that G × E 
interactions affected these traits more strongly.  

As reported in other studies, MT models did not significantly improve 
predictive abilities compared to ST models for lines without phenotypic 
data in the validation set [4–6]. A study based on simulated data showed 
that MT models could improve predictive abilities for a low heritability 
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trait when including a genetically correlated trait with high heritability. 
Additionally, the improvements were largest for traits with simple genetic 
architectures [2]. However, many traits that are relevant for breeding 
programs have complex genetic architectures. This might explain why the 
studies using empirical data for wheat lines concluded that MT models did 
not perform better than ST models. Another reason could be that the 
variance and covariance components are too inaccurately estimated in the 
MT models from relatively small datasets [7]. In the present study, the 
narrow-sense genomic heritability of each of the four traits was higher 
than 0.5, and there were only small differences in heritabilities between 
the traits. Furthermore, the highest genetic correlation was 0.30, so the 
traits were not highly genetically correlated. Thus, MT or TA models could 
possibly perform better if other traits with higher correlations or larger 
difference in heritabilities were used, or if data from lines replicated 
across multiple environments were available [6,26]. Here, GBLUP and 
Bayesian SNP-BLUP models were used for the genomic predictions and 
resulted in similar predictive abilities. Other types of models, such as 
BayesA, BayesCπ or Bayesian Power Lasso, can possibly account for major 
QTL effects more accurately and therefore, might perform better for traits 
with simple genetic architectures. However, the predictive abilities of 
different models are typically quite similar for complex traits [2,16]. 

A study of Fusarium head blight resistance in hybrid wheat concluded 
that genomic predictions could be improved if phenotypic data for the 
correlated traits heading date or plant height was available for predicted 
lines. ST genomic predictions performed as well as MT predictions when 
phenotypes of the correlated traits were only available in the training set 
[28]. In the study of [8], it was suggested to increase the size of training sets 
for genomic predictions by including lines phenotyped for protein content 
in order to improve predictions of highly correlated Farinograph or 
Extensograph quality traits using multi-trait or selection index models. In 
the present study, predictive abilities for Zeleny sedimentation and for 
grain protein content were improved when using TA models where the 
other trait was included. Grain protein content can be phenotyped 
relatively easily using near-infrared spectroscopy, whereas phenotyping 
other quality traits, such as Zeleny sedimentation, is more laborious [29]. 
Thus, all lines that are phenotyped for Zeleny sedimentation in a breeding 
program would typically also have been phenotyped for grain protein 
content. Phenotyping a high number of lines for grain protein content in 
order to increase the predictive ability for Zeleny sedimentation, would 
therefore be more relevant for breeding programs than vice versa.  

High-throughput phenotyping technologies can potentially provide 
phenotypic for large numbers of lines, which can be included in TA models 
to improve prediction of traits that are more difficult to phenotype. Such 
data can either be collected in automated greenhouse facilities or from 
fields during the growing season using, e.g., drones or tractor mounted 
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systems [4,30,31]. Canopy temperature and vegetation indices can for 
example be used for improved prediction of wheat grain yield [4,31]. 

CONCLUSIONS 

Predictive abilities of ST models were 0.5 or higher for all of the four 
quality traits based on 10-fold cross-validations. Genomic predictions 
based on MT models were not significantly more accurate than predictions 
based on ST models for the studied wheat quality traits. However, genomic 
predictions of Zeleny sedimentation could be improved using TA models, 
where the predicted lines had been phenotyped for grain protein content. 

SUPPLEMENTARY MATERIAL 
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