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ABSTRACT 

Following successful application in dairy cow breeding, genomic selection 
(GS) has become a hot topic among plant geneticists and breeders. GS and 
conventional methods have the same goal of identifying best genotypes for 
a given crop and region, and should follow the same principles, 
particularly in dealing with genotype-by-environment (GE). Dealing with 
GE includes dividing a target region into meaningful mega-environments 
(MEs) based on repeatable GE patterns and then selecting for each ME. 
This requires different GS models be developed for different MEs. 
Selection for each ME requires testing at multiple locations for multiple 
years to account for the unrepeatable GE in the ME and to estimate the 
genetic main effect, 𝐺 . For a ME with large GE, multiple and diverse 
cultivars should be selected and recommended. The number of locations, 
years, and replications within trials required to achieve a certain level of 
heritability (i.e., selection reliability) for a trait (e.g., yield) can be estimated 
from existing multi-location, multiyear variety trial data. Instead of direct 
selection for 𝐺, conventional selections have to resort to indirect selection, 
negative selection (culling), and a lengthy breeding cycle. GS offers the 
possibility for direct selection and positive selection for 𝐺  and thereby 
overcoming random GE and shortening the breeding cycle. To achieve this, 
GS models must be able to predict 𝐺 for a breeding population and its 
prediction accuracy should be measured by 𝑟(𝐺ெ, 𝐺) , 𝐺ெ  being GS 
predicted breeding values. This definition of prediction accuracy is the 
essential connection between GS and phenotype-based selection. This 
implies that GS models must be developed and evaluated using phenotypic 
data from multiple locations and multiple years representing the target 
ME. Using a single training population for model development and a 
different population for model evaluation will allow estimation of 𝑟(𝐺ெ, 𝐺), but it can be costly and may have limited relevance to a breeding 
program. A pragmatic GS framework was proposed in this paper, which is 
to use data from yearly preliminary yield trials for model development, in 
which a large number of new breeding lines are tested at several locations. 
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A GS model can be developed for each training population-by-trial 
(location-year) combination, and all available GS models can be used to 
make predictions, leading to a genotype-by-model two-way table of 
predictions for the current-year’s breeding population. This table can then 
be analyzed the way a breeder would do to a genotype-by-environment 
two-way table of a trait to make selection decisions. This table can also be 
used to evaluate and select models as a breeder would do for their test 
environments. Instead of 𝑟(𝐺ெ, 𝐺), “rate of success”, defined as the inverse 
of the number of genotypes that have to go through yield trials in order to 
identify a new cultivar, can be used to measure the prediction accuracy of 
GS. The prediction accuracy or rate of success determines the best 
pathway to integrate GS into a practical breeding program. GS prediction 
accuracy is expected to improve with time as more GS models are 
developed and as the breeding populations and the target ME are better 
represented in the GS models. A real multi-location, multi-year oat (Avena 
saliva L.) variety trial dataset and a practical oat breeding program were 
used to facilitate the discussions.  

KEYWORDS: genomic selection (GS); genotype-by-environment 
interaction (GE); GS model evaluation; GS model development; mega-
environment (ME); plant breeding; phenotype-based selection (PS); 
prediction accuracy; rate of success; sufficient testing; the breeder’s 
equation; training population size 

INTRODUCTION 

Genomic selection (GS), originated by Meuwissen et al. [1] and 
successfully applied in dairy cow breeding [2], has gained much attention 
among plant geneticists/biostatisticians. GS refers to selection based on 
predictions from DNA markers densely covering the whole genome, for 
traits that breeders normally select. This contrasts with traditional 
marker-assisted selection strategies, which target only traits controlled by 
a few major genes. Key techniques for applying GS in plant breeding are 
largely in place, including new marker technologies such as genotyping by 
sequencing (GBS, reviewed in [3]), bioinformatics tools for handling and 
analyzing massive sets of markers (e.g., [4,5]), and sophisticated 
phenotype-genotype modeling methods [1,6–8]. It has been demonstrated 
by theoretical and empirical studies that GS can be more robust and 
powerful than previous versions of marker assisted selection and is 
expected to bring radical changes to plant breeding [9–11]. On the other 
hand, applying GS in plant breeding can be much more complicated than 
in dairy cow breeding [12], the most important complication being from 
genotype-by-environment interaction (GE).  

So far, most publications on GS in plant breeding are based on 
simulations or proof of concept using existing data from historical variety 
trials, and by researchers other than practical plant breeders. Reports on 
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experimental application of GS have started to appear, e.g., in barley [13], 
winter wheat [14], and maize [15]. Thus, it seems that GS in plant breeding 
is now transitioning from theory and technology development to practical 
implementation. However, there is still a large knowledge gap between 
genomicists and practical breeders; what seems common knowledge in 
one discipline may make no sense to the other. This gap must be bridged 
before GS can be seamlessly integrated into plant breeding programs and 
achieve its potential. A clear roadmap on how to integrate GS in a practical 
breeding program remains to be developed. GS is supposed to predict 
“breeding values”, which is used to make selection decisions. However, 
this breeding value has not been clearly defined in plant breeder’s terms. 
From the perspective of plant breeders, the breeding value predicted by 
GS has to be yield (or any other breeding objective) across a population of 
environments representing a target mega-environment (ME); it is not just 
the yield in any environment. This definition is fundamental to developing, 
testing, and applying GS models in plant breeding. 

The overall objective of this article is to set a unified theoretical 
framework for conventional methods and GS so that genomicists and 
conventional plant breeders speak the same language when discussing the 
development, evaluation, and application of GS models in plant breeding. 
Specific objectives are (1) to review, illustrated with a real crop variety 
trial dataset, the basic principles of genotype evaluation in relation to 
dealing with GE, (2) to examine the procedure and selection strategies of a 
practical oat breeding program in relation to these principles, (3) to outline 
the potential roles of GS and propose a framework for GS model 
development, evaluation, and application, and (4) to discuss possible 
pathways of integrating GS into a practical plant breeding program.  

PRINCIPLES OF SELECTION IN PLANT BREEDING  

This section summarizes and demonstrates the most important 
principles in genotype evaluation and selection in plant breeding. These 
principles apply to both conventional selection and GS and represent a 
common ground to these two contrasting selection strategies. 

A Target Region Should Be Divided into MEs if There Are Repeatable 
GE 

A key issue in plant breeding is the presence of GE as discussed 
abundantly (e.g., [16–18]; and countless publications thereafter), which 
makes plant breeding much more complicated than dairy cow breeding 
[7,12], where efforts are made to define and hold constant a single ideal 
environment. One key step to deal with GE is to separate repeatable GE 
from non-repeatable GE, conceptually [19] and practically [20–22]. 
Repeatable GE can be utilized while non-repeatable GE must be avoided. 
When there is repeatable GE in a target region, the GE patterns should be 
used as a guide to divide the target region into sub-regions or MEs. 
Breeding for individual MEs, as opposed to breeding for the whole region, 
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can convert the repeatable GE in the whole region into genotypic main 
effect (G) within MEs, and thereby maximize breeding progress and 
overall productivity [21]. For a dataset from multi-year, multi-location 
trials with some common genotypes across years, GGE-GGL biplot analysis 
can be used to reveal any repeatable GE, which is the basis for dividing a 
target region into MEs [20,21,23]. A newer method, location-grouping (LG) 
biplot analysis, does not require common genotypes across years [22].  

In this section the yield data from the 2013 to 2018 Quebec provincial 
oat trials will be used to demonstrate the principles and methodologies in 
dealing with GE. Each year, approximately 45 registered oat cultivars or 
promising breeding lines were tested at nine locations representing the 
three zones of Quebec [24] plus the Ottawa location in Ontario. A total of 
112 genotypes were tested in these six years. Thirteen cultivars were tested 
in all years, which are currently the primary cultivars in Quebec. 

A LG biplot (Figure 1a) provides a graphical presentation of the Pearson 
correlations among test locations in each of the years (Table 1). Presented 
in the biplot are the 10 test locations (see their full names in Table 1) and 
the 57 trials, i.e., location-year combinations (represented by small circles). 

 

Figure 1. Location-grouping (LG) biplot for mega-environment analysis. (a) the LG biplot based on the yield 
data of the 2013 to 2018 Quebec provincial oat trials; (b) two mega-environments based on (a). This biplot is 
a graphical approximation of the numerical values in Table 1. See Table 1 for full location names. Each small 
circle represents a trial (location-year combination).  
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The biplot reveals two groups of test locations, consistent with results 
based on the GGE-GGL methodology [20,21]. The group at the lower part of 
the biplot consists of three Zone-3 locations (Normandin, Hebertville, and 
Causapscal) and three Zone-2 locations (St. Augustin, St. Etienne, and 
Princeville). The group at the upper part of the biplot consists of two Zone-
1 locations (St. Hyacinthe and St Hugues), a Zone-3 location (La Pocatière), 
and Ottawa. Ottawa is geographically close to Zone-1 of Quebec. La 
Pocatière belongs to Zone-3 geographically but often behaves like a Zone-
1 location [24]. There is little overlap between the two groups of locations, 
regardless of the yearly variations in the placement of each location (an 
indication of genotype by year interaction (GY) and/or genotype-location-
year interaction (GLY)); within groups, the locations cannot be separated 
due to their yearly variations. Hence, Figure 1a revealed two oat MEs, as 
more clearly shown in Figure 1b. The LG biplot has an interpretation that 
the cosine of the angle between two trials, two locations, or two groups of 
locations (i.e., MEs) approximates the genetic correlation between them. 
Thus, Figure 1a shows that the locations within a group were correlated 
closely and positively and locations between the two groups were also 
correlated positively, though loosely (Figure 1a). Consequently, the two 
MEs, though different, were somewhat positively correlated (Figure 1b). 

Table 1. Pearson correlations among test locations across tested genotypes in each year, based on the grain 
yield data of the 2013–2018 Quebec oat variety trials. 

Year Location § CAUS3 HEBE3 LAPO3 NDHY1 NORM3 OTT PRIN2 STAU2 STET2 STHU1 

2013 CAUS3 1 0.296 −0.132 −0.247 0.397 −0.202 0.032 0.272 - - 

2013 HEBE3 0.296 1 −0.119 0.287 0.421 0.308 0.329 0.406 - - 

2013 LAPO3 −0.132 −0.119 1 0.398 0.203 0.585 −0.118 0.482 - - 

2013 NDHY1 −0.247 0.287 0.398 1 −0.008 0.337 0.141 0.235 - - 

2013 NORM3 0.397 0.421 0.203 −0.008 1 0.184 0.184 0.642 - - 

2013 OTT −0.202 0.308 0.585 0.337 0.184 1 0.207 0.406 - - 

2013 PRIN2 0.032 0.329 −0.118 0.141 0.184 0.207 1 0.139 - - 

2013 STAU2 0.272 0.406 0.482 0.235 0.642 0.406 0.139 1 - - 

2014 CAUS3 1 0.494 −0.177 0.051 0.613 0.108 0.409 0.176 0.655 - 

2014 HEBE3 0.494 1 0.016 0.286 0.869 0.109 0.428 0.388 0.333 - 

2014 LAPO3 −0.177 0.016 1 0.772 −0.078 0.464 0.139 0.057 0.233 - 

2014 NDHY1 0.051 0.286 0.772 1 0.183 0.450 0.110 0.045 0.415 - 

2014 NORM3 0.613 0.869 −0.078 0.183 1 0.095 0.397 0.280 0.360 - 

2014 OTT 0.108 0.109 0.464 0.450 0.095 1 0.384 0.215 0.398 - 

2014 PRIN2 0.409 0.428 0.139 0.110 0.397 0.384 1 0.088 0.357 - 

2014 STAU2 0.176 0.388 0.057 0.045 0.280 0.215 0.088 1 0.248 - 

2014 STET2 0.655 0.333 0.233 0.415 0.360 0.398 0.357 0.248 1 - 

2015 CAUS3 1 0.189 −0.002 −0.035 −0.060 −0.044 0.201 0.040 0.113 −0.141 

2015 HEBE3 0.189 1 0.482 0.146 0.111 0.082 0.482 0.368 0.320 0.289 

2015 LAPO3 −0.002 0.482 1 0.697 −0.126 0.727 0.451 0.158 0.491 0.768 
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Table 1. Cont. 

Year Location § CAUS3 HEBE3 LAPO3 NDHY1 NORM3 OTT PRIN2 STAU2 STET2 STHU1 

2015 NDHY1 −0.035 0.146 0.697 1 0.077 0.707 0.253 0.341 0.513 0.768 

2015 NORM3 −0.060 0.111 −0.126 0.077 1 −0.094 0.272 0.315 0.242 −0.082 

2015 OTT −0.044 0.082 0.727 0.707 −0.094 1 0.356 0.070 0.228 0.703 

2015 PRIN2 0.201 0.482 0.451 0.253 0.272 0.356 1 0.340 0.305 0.284 

2015 STAU2 0.040 0.368 0.158 0.341 0.315 0.070 0.340 1 0.449 0.237 

2015 STET2 0.113 0.320 0.491 0.513 0.242 0.228 0.305 0.449 1 0.436 

2015 STHU1 −0.141 0.289 0.768 0.768 −0.082 0.703 0.284 0.237 0.436 1 

2016 CAUS3 1 0.397 −0.037 −0.355 0.340 −0.226 0.481 0.560 0.439 0.500 

2016 HEBE3 0.397 1 0.218 0.061 0.741 0.140 0.367 0.544 0.528 0.637 

2016 LAPO3 −0.037 0.218 1 0.326 0.151 0.396 0.267 0.316 0.520 0.415 

2016 NDHY1 −0.355 0.061 0.326 1 0.077 0.281 −0.006 0.213 0.146 0.179 

2016 NORM3 0.340 0.741 0.151 0.077 1 0.088 0.170 0.505 0.393 0.478 

2016 OTT −0.226 0.140 0.396 0.281 0.088 1 0.202 −0.014 0.187 0.245 

2016 PRIN2 0.481 0.367 0.267 −0.006 0.170 0.202 1 0.369 0.492 0.609 

2016 STAU2 0.560 0.544 0.316 0.213 0.505 −0.014 0.369 1 0.640 0.528 

2016 STET2 0.439 0.528 0.520 0.146 0.393 0.187 0.492 0.640 1 0.505 

2016 STHU1 0.500 0.637 0.415 0.179 0.478 0.245 0.609 0.528 0.505 1 

2017 CAUS3 1 0.345 0.131 0.215 0.615 0.309 0.342 0.264 −0.080 0.095 

2017 HEBE3 0.345 1 0.145 0.079 0.504 0.064 0.222 0.172 0.055 −0.014 

2017 LAPO3 0.131 0.145 1 0.816 0.185 0.710 0.575 0.289 0.473 0.735 

2017 NDHY1 0.215 0.079 0.816 1 0.202 0.803 0.441 0.337 0.373 0.708 

2017 NORM3 0.615 0.504 0.185 0.202 1 0.058 0.357 0.327 0.227 −0.017 

2017 OTT 0.309 0.064 0.710 0.803 0.058 1 0.512 0.224 0.271 0.844 

2017 PRIN2 0.342 0.222 0.575 0.441 0.357 0.512 1 0.294 0.507 0.474 

2017 STAU2 0.264 0.172 0.289 0.337 0.327 0.224 0.294 1 0.397 0.072 

2017 STET2 −0.080 0.055 0.473 0.373 0.227 0.271 0.507 0.397 1 0.300 

2017 STHU1 0.095 −0.014 0.735 0.708 −0.017 0.844 0.474 0.072 0.300 1 

2018 CAUS3 1 0.457 0.319 0.613 0.194 0.485 0.560 0.450 0.345 0.380 

2018 HEBE3 0.457 1 0.564 0.580 0.607 0.143 0.254 0.110 0.219 0.380 

2018 LAPO3 0.319 0.564 1 0.306 0.577 0.232 0.299 0.048 0.321 0.337 

2018 NDHY1 0.613 0.580 0.306 1 0.075 0.426 0.320 0.203 0.122 0.411 

2018 NORM3 0.194 0.607 0.577 0.075 1 −0.028 0.243 −0.013 0.397 0.155 

2018 OTT 0.485 0.143 0.232 0.426 −0.028 1 0.352 0.389 0.086 0.486 

2018 PRIN2 0.560 0.254 0.299 0.320 0.243 0.352 1 0.270 0.250 0.480 

2018 STAU2 0.450 0.110 0.048 0.203 −0.013 0.389 0.270 1 0.375 0.011 

2018 STET2 0.345 0.219 0.321 0.122 0.397 0.086 0.250 0.375 1 −0.022 

2018 STHU1 0.380 0.380 0.337 0.411 0.155 0.486 0.480 0.011 −0.022 1 
§ The full names of the locations are: CAUS3: Causapscal (Zone-3), HEBE3: Hebertville (Zone-3), LAPO3: La Pocatière 

(Zone-3), NDHY1: N-D-de-St-Hyacinthe (Zone-1), NORM3: Normandin (Zone-3), OTT: Ottawa (Ontario), PRIN2: Princeville 

(Zone-2), STAU2: St-Augustin (Zone-2), STET1: St. Etienne (Zone-2), STHU1: St. Hugues (Zone-1). 

Here we note that the two Quebec oat MEs can be largely (but not 
completely) explained by geographical regions. However, ME may also be 
defined by other factors such as crop management (e.g., irrigation) or soil 
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type, or a combination of factors. Regardless of the causes, the key 
requirement for ME delineation is repeatable GE.  

An important principle of dealing with GE is selection for individual 
MEs, as opposed to selection across MEs. If two MEs are negatively 
correlated, for example, southern Ontario versus the rest of eastern 
Canada for oat [25], it will not be possible to select cultivars that are best 
for both MEs and, therefore, it will be essential to breed and select 
specifically for each ME. If two MEs are positively correlated, as is in the 
current example (Figure 1), it may be possible to have cultivars that 
perform well for both MEs. Nevertheless, there will be cultivars that 
perform well in one ME but poorly in the other. Thus, selection and 
recommendation according to ME is still beneficial. This principle also 
applies to GS; GS models must be developed specific to each ME.  

Countless publications and methods exist in the literature on how to 
identify superior cultivars based on multi-environment trial data, under 
the name of “stability analysis” (e.g., [26]; all such analyses are meaningful 
only when applied to selection for a ME; they should not be used across 
MEs. Discussion hereafter will be restricted to selection for ME1 (Figure 1) 
in our sample dataset. 

Selection for a ME Must Consider both G and GE 

Another important principle of dealing with GE is that selection for a 
ME should consider both mean performance (G) and stability (GE) across 
environments, and GGE biplot analysis [23,27,28] is a preferred method 
for this purpose. Selection based on mean performance alone is 
incomplete use of the information while selection based on stability alone 
can be misleading; high stability is desirable only when combined with 
high means, and high stability is least desirable if combined with low 
means [29]. The yield data of the 13 common cultivars in the 35 trials 
within ME1 will be used as an example to illustrate genotype evaluation 
based on multi-environment trial data. These yield data are graphically 
summarized in the GGE biplot shown in Figure 2. The GGE biplot was 
based on environment-standardized yield data, as indicated by “Scaling = 
2” and “Centering = 1” at the top-left corner of the biplot; it therefore 
displays only G and GE and explained 53% of the total G + GE. The goodness 
of fit of the biplot is related to the ratio of G/(G + GE) in the data; a poor fit 
means a large GE relative to G. A GGE biplot has several functional forms 
[23,28,30]. The biplot in Figure 2a is the “mean vs. stability” form of the 
biplot. The red line with a single arrow is referred to as the “average 
environment axis” (AEA); it passes through the biplot origin and the 
“average environment” and points to higher mean yield across 
environments. Thus, the highest yielding cultivars were Nicolas and Akina, 
and the lowest yielding cultivars were Avatar and Vitality. The six highest 
yielding cultivars are ranked as Nicolas ≈ Akina > Nice ≥ Kara > Canmore > 
Richmond. The line with two arrows is perpendicular to (i.e., independent 
of) the AEA; it points to higher instability in either direction, which means 
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greater contribution to GE. Figure 2a shows that Nicolas and Akina had 
about the same mean yield but that Nicolas was more stable. Richmond 
was least stable, as indicated by its long distance to the AEA. None of these 
high-yielding cultivars was highly stable, indicating large unpredictable 
GE in ME1.  

The “which-won-where” form of the same biplot (Figure 2b) shows 
which cultivars yielded the highest in which trials in ME1. Akina, along 
with closely placed Nicolas, was the highest yielder in about half of the 
trials, which are placed in the sector between the radiate lines labelled 1 
and 6. Richmond was the highest yielder in about one-third of the trials, 
placed in the sector between lines 3 and 4. In these latter trials Nicolas 
yielded slightly better than Akina. Nice, along with closely placed Canmore, 
yielded the best in a few other trials, placed in the area between lines 2 
and 3. Thus, no cultivar yielded the best in all trials. Consequently, a set of 
contrasting cultivars (Nicolas, Akina, Nice, Canmore, and Richmond), 
rather than a single cultivar, should be selected and recommended for 
ME1, to stabilize the overall production. Selection based on GS predictions 
must also take this point into consideration. Kara yielded well only in trials 
where Akina and Nicolas yielded the best; it, therefore, may be omitted 
from selection/recommendation (Figure 2b).  

Figure 2c presents the same biplot but is used to visualize the relative 
yield of a cultivar, here Nicolas. The single arrowed line pointing to Nicolas 
passes through the biplot origin and the placement of Nicolas; it shows the 
relative performance of Nicolas in different trials; it shows that Nicolas 
yielded better than average in all trials but a few (CAUS3_17 and 
NORM3_17). 

The discussion related to Figure 2 demonstrates that GGE biplot is a 
versatile tool for genotype evaluation based on multi-environment data. 
Among other things, it can show both mean yield and stability of the 
genotypes (Figure 2a), the winning genotypes in each of the environments 
(Figure 2b), and the performance of a genotype in individual 
environments (Figure 2c). Moreover, it can show the typical behavior of a 
“superior” cultivar in a ME, which provides guidance on how to select a 
superior cultivar. Specifically, Figure 2a shows that Nicolas was overall the 
best yielder in ME1; Figure 2b shows that Nicolas was not the highest 
yielder in many of the trials; Figure 3c shows that Nicolas yielded above 
the average in all trials but a few. Therefore, the best cultivar for a ME does 
not have to be the highest yielder in every trial; however, it has to yield 
higher than average in all or most of the trials. On the other hand, a 
cultivar yielded the best in a single trial or in some trials is not necessarily 
the best cultivar for the ME. Consequently, a single trial may be used in 
negative selection (culling inferior genotypes) but cannot be used in 
positive selection (selection for superior genotypes).  
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Figure 2. GGE biplot to summarize the yield data of 13 oat cultivars in 35 trials in ME1. (a) The mean-vs.-
stability form of the biplot to show the mean yield and stability of the genotypes across trials; (b) The which-
won-where form of the biplot to show the highest yielding cultivars in various trials; (c) The biplot form to 
visualize the relative yield of a genotype, here, Nicolas, in different trials. See Table 1 for full location names.  

Stability across years is important for cultivar selection and 
recommendation, because the GE within a ME is usually dominated by GY 
and/or GLY. In ME1, Akina and Nicolas were the highest yielders (when 
viewed across locations) in years 2013 to 2017 while Richmond was the 
highest yielder in 2018 (Figure 3a). As a result, Nicolas and Akina were 
higher yielding and more stable than Richmond (Figure 3b). Nice and 
Canmore were stable across years but always yielded lower than Nicolas 
and Akina. Comparison between two cultivars in stability is meaningful 
only when they have similar levels of mean yield. So cultivar 
recommendation for ME1 should be in the order of Nicolas, Akina, Nice, 
Canmore, and Richmond, as shown in Figure 3b. Figure 3c shows the 
relative yield of Nicolas in different years; Nicolas yielded very well in 
2013 and 2015 but not as well in 2018. Nevertheless, it yielded clearly 
higher than average in all years.  
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Thus, Figure 3 shows the typical behavior of a superior cultivar across 
years. Figure 3b shows that Nicolas was the highest yielder in ME1 across 
years; Figure 3a shows that it was not the highest yielder in all years; and 
Figure 3c shows that it yielded higher than average in all years. Therefore, 
the highest yielding cultivar for a ME does not have to yield the best in all 
years but it has to yield above the average in every year. On the other hand, 
a cultivar that yielded the best in one year is not necessarily a good cultivar 
across years. Consequently, superior cultivars have to be identified 
through multi-year test; multi-location trials in a single year, though more 
powerful than a single trial, can and should only be used in culling inferior 
genotypes.  

 

 

Figure 3. The genotypic main effect plus genotype by year interaction (GGY) biplot ME1. (a) The which-won-
where form of the biplot to show which cultivar yielded the highest in each year; (b) the mean-vs.-stability 
form of the biplot to show the mean and stability of the cultivars across years; (c) the relative performance 
of Nicolas in each of the trials.  

Adequate Testing Is Essential for Reliable Genotype Evaluation 

The discussion associated with Figures 2 and 3 have already 
demonstrated the principle that adequate testing at multiple locations for 
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multiple years is essential for reliable genotype evaluation. This section 
defines “testing adequately” in both qualitative and quantitative terms. By 
definition, the GE within a ME is random and cannot be utilized, and this 
complicates genotype evaluation. Its adverse effects on genotype 
evaluation must be minimized through testing at multiple locations for 
multiple years to fully represent the population of environments in the 
target ME [17,31]. Within a target ME, the observed value, i.e., the 
phenotypic value for a trait of interest, 𝑃, is a mixture of environmental 
effect (E), G, and GE, plus non-random variation (i.e., spatial patterns, S) 
and random errors within trials (ε): 𝑃 =  𝐺 +  𝐸 +  𝐺𝐸 +  𝑆 +  . (1) 

Because the population of environments is defined by both locations 
and years, genotype evaluation must be conducted under the multi-
location, multi-year framework [31]. In this framework, E is partitioned 
into effects due to location (L), year (Y), and year by location interaction 
(YL). Consequently, Equation 1 is expanded to: 𝑃 =  𝐺 +  (𝐿 +  𝑌 +  𝐿𝑌)  + (𝐺𝐿 +  𝐺𝑌 +  𝐺𝐿𝑌)  +  𝑆 +  . (2) 

While the purpose of plant breeding is to select G, only P can be 
determined directly, thus the term “phenotype-based selection (PS)”. This 
G may be denoted as 𝐺 hereafter, standing for breeding values obtained 
through phenotyping, as opposed to 𝐺ெ, which stands for breeding values 
predicted by DNA markers. To obtain proper estimation of 𝐺 , all the 
confounding effects in Equation 2 have to be removed; this is achieved by 
testing at multiple locations for multiple years, and with proper 
replication and spatial variation adjustment within trials:  𝐺  =  𝑃 −  (𝐿 +  𝑌 +  𝐿𝑌)  − (𝐺𝐿 +  𝐺𝑌 +  𝐺𝐿𝑌)  −  𝑆 −  . (2a) 

Since GY and GLY usually dominate GE within a ME (if GL dominates 
GE, then the region would be divided into different MEs), multi-year 
testing is crucial for identifying truly superior genotypes. From Equation 
2 and the analyses exemplified in the previous section, it is obvious that 
data from a single trial or from multiple locations in a single year may 
have limited value in identifying superior genotypes. For the same reason, 
GS models based on data from a single trial or from multiple locations in 
a single year have limited credibility.  

The reliability of the trials for genotype evaluation is measured by the 
achieved heritability (H) [21,32,33], assuming proper handling of any 
spatial variations within trials: 𝐻 = ಸమ

ಸమ ାಸಽమ ାಸೊమ ାಸಽೊమ ା మೝ, (3) 

where ௫ଶ is the symbol for various variances specified by the subscript 𝑥. 
An H = 1.0 means the selection would be completely reliable, no matter 
how small the genotypic difference is; an H = 0 means the selection would 
be ineffective, no matter how large the varietal difference may appear. 
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Different traits are intrinsically different in H, due to the difference in the 
number of loci involved in controlling the trait (see also discussion on 
training population size in relation to Equation 10 later). H is associated 
positively with the genetic variance (ଶீ ) but negatively with the variances 
for various components of GE and experimental error. For a given trait, a 
given set of genotypes (i.e., a breeding population), and a given ME, these 
various variances are constant (though unknown), and H can only be 
improved by increasing the number of locations (𝑙), the number of years 
(𝑦) in which the trials are conducted, and/or the number of replications 
( 𝑟) within trials, again assuming proper handling of spatial variation 
within trials. Therefore, genotypes must be adequately tested for reliable 
selection, which is another key principle.  

The reliability of the genotypic ranking, as shown in the GGE biplots 
(Figures 2a and 3a), which is measured by H, increases with increased test 
locations and years and replications within trials (Equation 3). However, 
each additional trial or replication comes with a cost. Both selection 
reliability and selection cost must be considered in a practical breeding 
program. A compromise between the two is to target H = 0.75 [23,25]. The 
optimum number of years, the optimum number of locations per year, and 
the number of replications within trials can all be roughly estimated by: 𝑁 = 1 + 3(௫ଶ

ଶீ ), (4) 

Where ଶீ  and ௫ଶ  are the estimated genetic variance and GE variance or 
genotype by replication variance, respectively, depending on the scenario.  

The officially recognized crop variety registration committees in 
Canada (possibly in other countries as well) require at least two or three 
years of multi-location testing and a minimum number of location-year 
combinations to decide if a breeding line can be supported for registration; 
experience indicates that a three-year multi-location testing is usually 
adequate for identifying superior cultivars. Applying Equation 4 to the 
genotype by year two-way tables (not presented) in our sample dataset, 
the number of years required to achieve an H = 0.75 was estimated to be 
2.8 for ME1 and 2.4 for ME2.  

Applying Equation 4 to the yearly genotype by location two-way tables 
(not presented) in our sample dataset, the number of locations required to 
achieve H = 0.75 for ME1 was estimated to be from 5.4 to 10.2, depending 
on the year, and averaged 7.2 per year. For ME2, this number was from 1.9 
to 6.2, and averaged 4.4. So, the number of test locations actually used (6 
for ME1 and 4 for ME2) in the Quebec oat trials were close to be adequate.  

When the two MEs were analyzed jointly, the required number of 
locations per year was estimated to be from 7.0 to 11.9, depending on the 
year, and averaged 8.6. This number is smaller than what was estimated 
when the two MEs are analyzed separately (7.2 + 4.4 = 11.6). This suggests 
that when two MEs are similar, treating them as one may be more efficient 
in identifying the best genotypes, supporting the conclusion of Atlin et al. 
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[33]. However, analysis across MEs may mask some important patterns 
between and within MEs. For example, Nice and Canmore were important 
cultivars in ME1 (Figures 2 and 3) but were among the poorest yielders in 
ME2 (results not shown).  

Increasing the number and diversity of genotypes in the trials in a non-
random fashion (i.e., increasing the size and diversity of the training 
population in terms of GS model development) may increase the genetic 
variance. As a result, the pre-set heritability level may be achieved with 
smaller number of locations per year and number of replicates within 
trials (Equation 3). 

Final Selection Decisions Have to Consider Multiple Breeding 
Objectives 

In addition to dealing with GE for a given trait, selection based on 
multiple traits is also an important aspect. Although the economic yield is 
always the most important trait for all crops, other traits can also 
determine the fate and value of a genotype. Multiple breeding objectives 
must be considered in genotype selection and cultivar recommendation, 
which adds another dimension to the complexity and difficulty in plant 
breeding. In fact, plant breeding is not only to increase the yield of a crop 
but more to combine high yield with other desirable traits (i.e., 
performance reliability and end-use quality). For oat, lodging resistance 
and test weight are two most important traits, in addition to yield. For oat 
millers, groat content and beta-glucan content are very important too. The 
millers also require the oil content to be lower than 8% to meet the 
requirement for healthy food labeling. In addition, many other traits are 
also considered by growers and end-users. For convenience, traits can be 
classified into three functional categories. Type I: yield, the single most 
important trait; Type II: key traits, which can fail a cultivar for a target 
environment and/or end-use if a minimum requirement is not met; and 
Type III: traits that may add value but usually do not fail a cultivar 
regardless of their levels [34].  

Two strategies have been used in dealing with multiple traits in plant 
breeding: independent culling and index selection, used in tandem or 
jointly [35]. Independent culling can be conducted any time when a 
relevant trait is observable or determined; index selection has to wait till 
data for all target traits become available. Independent culling is to discard 
a genotype if it does not meet the minimum requirement for any single 
breeding objective, regardless of its levels in other traits. Index selection 
is to select genotypes based on an index, which is a linear combination of 
the levels of the breeding objectives, with each trait being given a weight 
according to their importance perceived by the breeder/researcher. Linear 
indices assume that the importance of the level of one trait is independent 
of the levels of other traits. However, the fact is, the economic value of the 
level of a trait depends on the associated level of other traits, particularly 
that of yield. For example, superior lodging resistance is important only if 
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it is combined with high yield; it has little use to growers if it is associated 
with low yield. Based on this understanding, genotypes should be 
evaluated on their levels of combining yield with other breeding objectives 
[36]. One way to do this is to transform a genotype-by-trait two-way table 
into a standardized genotype by yield*trait (GYT) two-way table. From the 
standardized GYT table, a GYT index can be calculated, which is the mean 
across the standardized yield-trait combinations. This GYT index can be 
used to indicate the overall superiority of the genotypes. Preferably, this 
standardized GYT table can be visually studied using a GYT biplot [36].  

Presented in Figure 4a is the GYT biplot for ME1, based on the 2013 to 
2018 Quebec data for ME1 (numerical data not presented). In addition to 
yield, four traits are included: lodging score, test weight, beta-glucan 
content, and groat content. The single-arrowed line passes through the 
biplot origin and the average yield-trait combination; it points toward 
superiority; the projections of the genotypes onto this line are highly 
correlated with the GYT index. Thus, the overall superiority of the 13 
cultivars was in the order of Nicolas ≈ Akina > Canmore ≥ Kara > Nice… > 
Avatar. The double-arrowed line indicates the strengths and weaknesses 
of the cultivars. For example, Figure 4a shows that Akina was stronger 
than Nicolas in combining yield with lodging resistance and beta-glucan 
content while Nicolas was stronger than Akina in combining yield with 
test weight and groat content. Thus, the GYT biplot has two advantages 
over traditional selection index. First, the GYT index reflects the 
understanding that the importance of a trait level is dependent on the 
yield level with which it is associated; second, the GYT biplot is informative 
in presenting the trait profiles of the genotypes. The GYT biplot is also a 
useful tool to breeders in selecting breeding parents. For example, Figure 
4a is highly suggestive that a cross between Akina and Nicolas, the two best 
cultivars with contrasting trait profiles, may lead to a promising breeding 
population for combining all the breeding objectives considered here.  

The GYT biplot in Figure 4a assumed equal importance for all yield-trait 
combinations. This is justified as the biplot also presents the trait profiles 
of the genotypes, which can be used to make selection decisions based on 
a specific requirement. For example, if beta-glucan content and/or lodging 
resistance are considered more important, then Akina, instead of Nicolas, 
should be recommended; if test weight and/or groat content are more 
valued, then Nicolas should be more preferred than Akina. Nevertheless, 
differential weights can be applied to GYT biplot analysis if it is so desired 
[34]. Figure 4b is the GYT biplot applying more weight to lodging resistance 
(1.5 times of other traits). As a result, Akina and Kara, which had better 
lodging resistance, are placed before Nicolas and Canmore, respectively, 
as compared to Figure 4a. Comparing Figure 4b with Figure 4a indicates 
that differential weighting is not needed for biplot-based decision making; 
it is needed, however, if the decision is to be made solely on the GYT index.  
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Figure 4. The genotype by yield*trait (GYT) biplot for ME1 to show the overall superiority of the cultivars 
and their trait profiles in ME1. (a) Equal weights for all traits; (b) a greater weight for lodging resistance (1.5 
time of the normal weight). Each yield*trait combination is denoted as Y*Trait. A negative sign (“–”) is placed 
before “Y*Lodging” to transform “lodging score” to “lodging resistance”. The traits are: beta-glucan content; 
GROAT: groat content; KG/HL: test weight; LOD: lodging score; BGL.  

To summarize this section, dealing with GE is a key issue in plant 
breeding, and dealing with GE should follow the following principles and 
methodologies. First, mega-environment analysis should be conducted to 
discover any repeatable GE patterns so as to divide the target region into 
meaningful subregions or MEs. The GGE-GGL biplot or the LG biplot can 
be used for this purpose. Selection within MEs, rather than across MEs, can 
make use of the repeatable GE. Data from multi-location, multi-year trials 
are required for this analysis; the GGE-GGL biplot, or better, the LG biplot, 
is the recommended tool for mega-environment analysis. Second, 
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selection for a ME should consider both G and GE, and GGE biplot analysis 
is a versatile and effective tool for this purpose. For a ME with large and 
unpredictable GE, multiple and diverse cultivars, rather than a single 
cultivar, should be selected and recommended. Third, testing adequately. 
That is, the number of test locations, the number of years of testing, and 
the number of replications within trials should be sufficiently large to 
achieve a certain level of heritability. These numbers can be roughly 
estimated from existing crop trial data. Data from a single trial or from 
multi-location trials in a single year can be used in culling inferior 
genotypes but are not sufficient for selecting superior cultivars. Finally, 
ultimate selection decisions have to consider multiple breeding objectives, 
which adds another dimension to the complexity and difficulty of plant 
breeding. GYT (Biplot) Analysis can be a useful tool for this purpose. These 
principles and methods apply to both conventional selection and GS.  

CONVENTIONAL SELECTIONS ARE INDIRECT SELECTION AND 
NEGATIVE SELECTION 

So far, most, if not all, crop cultivars are developed primarily through 
conventional selection methods, and conventional breeding has been 
successful. Nevertheless, the selection methods used in conventional plant 
breeding bear little relation to the principles discussed in previous section. 
In practice, no selection decision is made on data from replicated trials 
tested at multiple locations for multiple years as required in Equation 2 in 
most part of the breeding cycle, because this is practically unfeasible. 
Instead, indirect selection (i.e., selection via presumably correlated traits) 
and negative selection (i.e., culling for inferior genotypes) are the key 
approaches in a conventional breeding program. In this section we will 
describe the procedures and selection methods that we use in the Ottawa 
oat breeding program. This will set a scene for discussing the advantages 
and disadvantages of conventional selection versus GS and strategies of 
integrating GS in the breeding program.  

The Breeding Procedure 

The target region of the oat breeding program at AAFC-Ottawa is 
eastern Canada (including provinces of Ontario, Quebec, New Brunswick, 
Nova Scotia, and Prince Edward Island); the target end-uses are multifold 
but milling (food) oat is the main driving factor. Eastern Canada consists 
of two contrasting oat MEs, southern Ontario and the rest of eastern 
Canada [25]. Within the second ME, different but similar MEs exist  
([20–22], and the previous section). The main breeding objectives include 
high grain yield, superior lodging resistance, superior grain quality (high 
test weight and large, heavy kernels, and high groat content), and superior 
compositional quality (high levels of β-glucan and protein, and an oil 
concentration lower than 8%). Resistance to crown rust is also critical for 
oat production in southern Ontario.  
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Figure 5. The breeding procedure of the Ottawa oat breeding program and possible pathways to integrate 
GS.  

The oat breeding cycle can be divided into four stages (Figure 5). Stage 
1 is parent selection and hybridisation; this is the first and most important 
stage in breeding. 50 to 100 crosses are made yearly; usually each cross 
contains at least one parent that is a proven superior cultivar or promising 
breeding line. Stage 2 is generation advance, to advance the breeding 
population (c. 10,000 F2 individuals from all crosses) to a generation when 
individuals become homozygous enough for effective selection. We grow 
three generations per year in greenhouses, advancing the population to F4 
in one year, or to F7 in two years. This generation advance is performed by 
modified bulk, which emulated single-seed-descent. No deliberate 
selection is made during the advance, although unintended selections may 
occur due to competition among plants and other factors.  

Stage 3 is visual selection, which consists of two consecutive years. In 
the first year (Stage 3.1), approximately 10,000 breeding lines (F4 or F7) are 
grown into 10,000 hill plots in the field. Visual selection is conducted by 
eliminating lines that are excessively tall, late, weak, or diseased. Lines not 
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eliminated are harvested and visually examined for grain characteristics 
(e.g., kernel size, shape, uniformity, plumpness, seed amount, hull 
thickness, and the feel of test weight). Only lines with seeds thought to be 
acceptable to oat growers and end-users will be kept. After this year, the 
10,000 breeding lines will be reduced to approximately 1000, a 90% 
reduction. In the 2nd year of visual selection (Stage 3.2), the 1000 lines are 
grown into 1000 unreplicated plots, each consisting of four rows of 4 m 
long, referred to as the “Observation Nursery”. These lines are also 
selected visually similar to the previous year, but the visual judgement for 
yield potential may be more credible. Uniformity (homozygosity) is also 
considered at this stage. This nursery also serves to increase the seed for 
use in next year’s yield trials. After the two years of visual selection, the 
breeding population is reduced to approximately 300 lines.  

Stage 4 is the yield trial stage. It consists of five years of multi-location 
testing, with reduced number of lines and increased number of test 
locations and replications each year. In year-1 (“Home Test” or Stage 4.1) 
the c. 300 lines selected from the previous year are tested at three locations 
in eastern Canada with two replications each. The lines are evaluated 
primarily for grain yield but also for grain quality, end-use quality 
(determined from grain samples from one or two locations), resistance to 
lodging, resistance to key diseases that occurred, and days to maturity. 
This is a large-scale test; it is not only costly but also difficult to implement 
as not many collaborators can accommodate a trial of >600 yield plots (i.e., 
it is limited by “physical capacity and partnerships”, [37]. Around 60 of the 
300 lines will be selected and advanced to year-2 test (“Preliminary Test” 
or Stage 4.2), which is conducted at c. 10 locations, including six locations 
in eastern Canada (representing the two contrasting ME) and three or four 
locations in western Canada. This wide test is to gather information on any 
specific adaptations of the genotypes to different regions. Approximately 
20 of the 60 lines will be selected and advanced to the registration trials 
(Stages 4.3 to 4.5). The Registration test consists of three years (years 3 to 
5), which are required to obtain support for registration in Ontario, 
Quebec, and Atlantic provinces. In the yearly Registration test, around 20, 
10, and five lines are first-, second-, and third-year entries, respectively. 
The Registration test is conducted at seven eastern Canadian locations 
covering the two contrasting MEs, with four (officially required in Ontario) 
or three (in other provinces) replications at each location. This number of 
locations is smaller than the estimated minimum requirement [25], which 
may limit the selection reliability. Each year in Stage 4, genotypes are 
eliminated for low yield, poor standability, or poor end-use quality. Lines 
that survived all five years of testing may be released as new cultivars. 
Using these procedures, we were able to release and license over 20 new 
oat cultivars in the last 10 years, and some of these showed significant 
improvements over official controls and became leading cultivars in 
eastern Canada [38,39].  
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Limitations of Conventional Selection 

The selection theory presented earlier requires that selection be made 
on data from replicated trials conducted at a sufficiently large number of 
locations for a sufficiently large number of years so as to remove 
complications from experimental error, spatial variation, GL, GY, and GLY 
(Equation 2). However, selection in the practical breeding program rarely 
meets this requirement. In the visual selection stage (Stage 3), the selection 
is not even on the target traits as they are not measurable. Instead, the 
selection is on traits that are observable and thought to contribute to a 
target trait. Visually assessed yield components are used to select for yield; 
plant height and perceived straw strength are used to select for lodging 
resistance; maturity and height are used to select for regional adaptation; 
and visual grain characters are used to select for grain quality and milling 
quality. All selections are based on unreplicated observations in a single 
environment.  

In the yield trial stage (Stage 4), direct selection for the target traits 
becomes possible. However, the most intense selections are made on 
single year data, and relatively few genotypes are advanced to test for 
multiple years. The selection is, therefore, confounded with GY and GLY; 
it may be confounded with GL as well due to the limited number of test 
locations. Therefore, even at this stage, most selections can be considered 
as genitive selection, i.e., to eliminate poor genotypes, rather than to select 
superior genotypes.  

So, indirect selection and negative selection (culling) are the key 
strategies used in conventional selection. The philosophy behind 
conventional selection is that a superior cultivar should perform well in 
all environments (all locations and years) for all breeding objectives and 
their components, and any genotype that is poor in any environment 
(location or year) for any breeding objective or any of its components 
should be eliminated. While this philosophy seems logical, it is difficult to 
implement accurately. In addition to GE, unfavorable associations among 
traits [38] and pleiotropic gene effects further complicates the selection. 
For example, late maturity may cause a genotype unfit to some 
environments but it is difficult to decide how late is too late, as late 
maturity is usually associated with high yield potential; tall plants tend to 
be susceptible to lodging but it is difficult to decide how tall is too tall, as 
taller plants may have higher yield potential in drought-prone 
environments. Kernel size is a yield component; however, it is difficult to 
decide how small is too small. In fact, the highest yielding cultivar in 
eastern Canada, Nicolas (Figures 2–4), is known to have relatively small 
kernels and to be late in maturity. If selection on maturity and kernel size 
are too harsh, genotypes like Nicolas may be discarded before they have a 
chance to show their yield potential. Thus, the danger exists that truly 
superior genotypes can be discarded during the various stages of culling.  

Due to the nature of indirect selection and negative selection, it takes 
over 10 years to complete a breeding cycle, from making a new cross to 
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planting a new cultivar in farmers’ field (Figure 5). From the “breeder’s 
equation” (Equation 5, [37,40]), the length of the breeding cycle, 𝐿, is a 
severe limiting factor to breeding progress: 

𝐺 = ீ𝑖ℎ/𝐿, (5) 

where 𝐺  is breeding progress, ீ  is as defined in Equation 3, 𝑖  is the 
selection intensity, ℎ is the selection accuracy, which is equivalent to √𝐻 
as defined in Equation 3.  

Advantages of Conventional Methods 

Despite its limitations, conventional breeding has been successful and 
cost effective. The Breeder’s Eye, i.e., the art component of plant breeding 
[41], plays an important role for breeding success. It allows the breeder to 
make reasonably good decisions with limited cost, time, and information. 
The greatest advantage of conventional selection is its cost effectiveness. 
For example, the cost is negligible in the visual selection stage (Stage 3, 
Figure 5), during which the breeding population is reduced by 97% (a very 
high selection intensity). Any alternative methods, including GS, have to 
compete with conventional breeding in cost efficiency.  

As an aside to the current discussion on selection but a key issue to 
plant breeding as a whole, the complete breeder’s equation may be 
expressed as: 𝐵𝑟𝑒𝑒𝑑𝑖𝑛𝑔 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = (ඥµீ + ீ𝑖ℎ)/(𝐿𝐶), (6) 

where  is the mean of the breeding population, and 𝐶 is the cost involved 
in the breeding process. The first part of the equation is to create a 
promising breeding population, and the second part is to select superior 
genotypes out of it. The breeding value of a breeding population, VP, is 
determined by both the population mean and the genetic variability 
within it: 𝑉𝑃 = µீ , (7) 

and parent selection (Stage 1, Figure 5) is of utmost importance for 
breeding success. All factors in Equation 6 should be considered in 
developing a successful breeding program/selection strategy.  

To summarize this section, conventional selection methods are 
characterized by indirect selection and negative selection. Poor genotypes 
are culled (rather than superior genotypes selected) on individual target 
traits or their components in a single environment, a single trial, or multi-
location trials in a single year. Genotypes that have survived all these 
negative selections may be released as new cultivars. Conventional 
selections are subjective and have a long breeding cycle but are flexible 
and cost-effective.  
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GENOMIC SELECTION MAKES DIRECT SELECTION AND POSITIVE 
SELECTION POSSIBLE 

Definition of GS and Its Potential to Improve Breeding Efficiency 

In GS, the breeding values of the genotypes in a breeding population, 𝐺.ெ, are predicted via genetic markers (𝑀)(Equation 8) [6]. 𝑀 represents 
allele values of DNA markers densely covering the whole genome so that 
all possible loci controlling the trait of interest are tagged by markers in 
high linkage disequilibrium; the parameter 𝑏 represents the effects of each 
of the marker alleles on the breeding value. 𝐺,ெ = 𝑏𝑀. (8) 

The purpose of plant breeding is to select genotypes that perform best 
across the population of environments in a target ME (Equation 2a). 
Therefore, 𝐺,ெ must be the predicted performance of the genotypes in a 
breeding population across environments representing the target ME. This 
definition of 𝐺,ெ , though common sense to plant breeders and 
quantitative geneticists, seems to be new to the GS literature. This 
definition brings PS and GS in the same framework, and has two extremely 
important implications: 

First, the success of GS must be measured by 𝑟(𝐺,ெ , 𝐺,) , i.e., the 
correlation between 𝐺,ெ and 𝐺,, the latter being the genetic main effects 
of the genotypes in the breeding population obtained from multi-location, 
multiyear trials representing the ME (Equation 2a). Therefore, GS 
prediction accuracy cannot be obtained by testing the breeding population 
in a single trial or multi-location trials in a single year.  

Second, a useful GS model, i.e., the marker effects 𝑏, has to be developed 
by testing the training population(s) at multiple locations for multiple 
years representing the ME, so as to obtain the genetic main effects of the 
training population (Equation 2a), 𝐺்,, because 𝑏 = 𝑓(𝑀, 𝐺்,). (9) 

Equation 9 implies that GS model development relies on three aspects: 
(1) the quantity and quality of marker data (𝑀), (2) the quantity and quality 
of phenotypic data (𝐺்,), and (3) the robustness of modeling (statistical) 
methods ( 𝑓 ). Since the first and third aspects have been addressed 
abundantly in existing literature, this paper focuses on aspect 2. 

Assuming sufficiently high prediction accuracy, (i.e., high 𝑟(𝐺,ெ, 𝐺,)), 
GS would have two dramatic advantages over conventional selection: 

(1) It allows direct selection for a target trait and positive selection for 
superior genotypes, as soon as the genotypes under selection are 
sufficiently homozygous.  

(2) It can bypass part or the whole of Stage 3 and Stage 4 in the breeding 
cycle (Figure 5) and thereby shorten the breeding cycle dramatically.  
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A Proposed Pragmatic GS Framework 

The key to GS success is how to achieve high prediction accuracy. 
Intuitively, Equation 9 may imply that a single GS model is developed by 
testing a single training population at multiple locations for multiple years 
in order to obtain the required 𝐺், . This would mean that a training 
population has to be developed and tested over multiple years, 
independently of the trials in a practical breeding program.  

A relaxation of this requirement would be to allow the training 
population to differ each year or even in each trial (location-year 
combination), as long as each training population sufficiently represents 
the breeding population(s). This would allow the routinely conducted 
breeding trials, e.g., the Home Test (Stage 4.1, Figure 5), to be used for 
model training. A caveat of this is that lines in this population have already 
been subject to selection; they can provide an effective training set only if 
contrasting alleles remain present. In our program, we believe that this 
criterion is fulfilled because the Home Test is composed of visually 
selected lines as well as lines from GS selected in both positive and 
negative directions. However, it would not be fulfilled if the Home Test 
were composed only of lines selected in a positive direction by GS. 

Given a set of appropriate training populations, each subjected to 
replicated testing, a GS model can be developed for each population by 
location by year combination, so Equation 9 will become: 𝑏 = 𝑓(𝑀, 𝐺்), (9a) 

where 𝐺்  is the genotypic main effects for the training population(s) 
tested in trial 𝑗, each trial being a location by year combination, and 𝑏 the 
corresponding maker effects. 

Accordingly, Equation 8 becomes 𝐺,ெ = 𝑏𝑀, (8a) 

where 𝐺  is the predicted breeding values for the breeding population 
based on each of all available GS models that have been developed. The 
results will be a genotype by model two-way table of GS predictions for the 
trait of interest, similar to the genotype-by-environment data of a trait 
obtained from multi-environment trials. This genotype-by-model two-way 
table of GS predictions can be analyzed in the same manner as that 
breeders would analyse the phenotypic data from multi-environment 
trials (Figures 2 and 3), replacing environments with models. The final GS 
decision will be based on the mean and stability of the genotypes in the 
breeding population across GS models. Moreover, when many models 
become available, the genotype-by-model two-way table of predictions can 
be used to evaluate the models based on their representativeness and 
discriminating ability in the same way that breeders evaluate their test 
environments [23]; poor models would be discarded and only good models 
would be used in making decisions. With time, more GS models will be 
developed, the breeding population and the ME will be better represented, 
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and the GS predictions will be more accurate. Importantly, although three 
years of testing are required for supporting the registration of a cultivar, 
GS models from many years may be developed and used in the prediction 
and selection, which may lead to an H (Equation 3) or ℎ (Equation 5 ) that 
is higher than any practical multi-location multi-year test system can 
possibly achieve (Equation 3). This is a unique opportunity provided by GS 
for accurate selection of superior genotypes. In addition, GS models for 
multiple breeding objectives have to be developed. Predictions for multiple 
traits can be integrated by methods such as GYT analysis (Figure 4; [34,36]) 
to make final selections.  

Rate of Success as a Measure of GS Prediction Accuracy  

Prediction accuracy is everything. As mentioned earlier, GS prediction 
accuracy has to be measured by 𝑟(𝐺,ெ , 𝐺,) , i.e., correlation between 
marker-predicted breeding values (𝐺,ெ) and the genetic main effects of 
the genotypes (𝐺,), of a breeding population for a ME. Since it takes multi-
location trials for multiple years to obtain 𝐺,, decisive evaluation of GS 
success will also take years. Furthermore, it is costly and unrealistic to test 
a full breeding population or even the subset of GS selected lines at 
multiple locations for multiple years merely to fulfil requirements of 
“experimental validation”. Therefore, instead of determining the 
prediction accuracy, we propose a “rate of success” to measure the success 
of a selection strategy. The rate of success is defined as the inverse of the 
number of genotypes that have to be tested in the yield trials to identify a 
superior genotype. For example, if one out of 60 GS-selected lines survived 
the yield tests and met the requirement for new cultivar registration, then 
the rate of success is 1/60.  

It should be pointed out that so far most publications on GS in plant 
breeding have used the approach of cross validation to assess GS 
prediction accuracy (e.g., [42]). Cross validation may be useful for 
assessing the goodness of fit of the GS models developed from different 
modelling approaches and different training population sizes, but it is not 
a direct measure of GS prediction accuracy or rate of success. The 
correlation between GS predicted values and a one-year performance is 
not a decisive measure, either, due to the presence of large GY and/or GLY 
(Figure 3), and because it does not fulfil any practical question that a 
breeder would have about the effectiveness of GS in developing successful 
plant varieties, unless it is restricted to single well-defined environments 
(as it is in many animal breeding applications).  

Training Population Size Required for GS Model Development 

According to Daetwyler et al. [43], the potentially achievable GS 
prediction accuracy, 𝑅(𝐺,,ெ, 𝐺,,), is determined by:  𝑅(𝐺,ெ, 𝐺,) = ට ு(ು/ಸ)ு(ು/ಸ)ାଵ, (10) 
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where H is the achieved heritability as defined in Equation 3, 𝑛 is the size 
of the training population, and 𝑛ீ is the number of loci controlling the trait 
of interest in the breeding population. The achieved prediction accuracy, 𝑟(𝐺,ெ, 𝐺,) , should be equal to the achievable or potential prediction 
accuracy, assuming perfect marker data, phenotypic data, and modeling 
technique (Equation 9).  

Equation 10 shows that the potential prediction accuracy of GS can be 
increased by increasing H and 𝑛 and by reducing 𝑛ீ . For a given breeding 
population and trait, 𝑛ீ  is a fixed, though usually unknown, number. 
Therefore, improvement of the prediction accuracy can only be achieved 
by two approaches: (1) increasing the size of the training population, and 
(2) improving the heritability through adequate testing (Equation 3). The 
combined requirement is phenotypic data from testing a large enough 
training population(s) at multiple locations for multiple years 
representing the target ME. This section focuses on the required 
population size.  

The required training population size can be derived from Equation 10 
with some assumptions. The relationship between the achievable 
prediction accuracy 𝑅 and the ratio  𝑛/𝑛ீ  at two levels of heritability is 
depicted in Figure 6, based on Equation 10. It can be seen that the 
achievable prediction accuracy can reach 0.8 or higher when  𝑛/𝑛ீ ≥ 7, 
even when the heritability is only 0.25. Assuming that the number of 
polymorphic loci controlling the trait of interest in the breeding 
population is 100 (i.e., 𝑛ீ = 100), which should be adequately large for any 
breeding population and trait (a population of 10,000 allows only 13 genes 
to segregate in all possible combinations), then a training population of 
700 would be sufficient ( 𝑛 = 7𝑛ீ = 700) to achieve a potential prediction 
accuracy of 0.8 at H = 0.25. Assume a heritability of 0.5, which can often be 
achieved for grain yield in our Home Test (Stage 4.1, Figure 5), and again 
assume 𝑛ீ = 100 , the required training population for a potential 
prediction accuracy of 0.80 is approximately 3.5𝑛ீ or 350. This is close to 
the number of entries we normally test in the Home Test. Assume H = 0.5 
and 𝑛ீ = 100 and setting the achievable prediction accuracy to 0.9, the 
required population size will be 𝑛 = 8.0𝑛ீ  or 800. Therefore, a training 
population of 350 to 800 should suffice to achieve a potential prediction 
accuracy of 0.8 to 0.9 for any trait and breeding population. It can also be 
seen that the effect of increasing population size on improving prediction 
efficiency is diminishing when the population size is beyond 8𝑛ீ . If 𝑛ீ =50 is a reasonable assumption, then the required population size is from 
175 to 400 to achieve a prediction accuracy of 0.8 to 0.9. 
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Figure 6. The relation between potential prediction accuracy of GS and the ratio of the number of genotypes 
in the training population over the number of loci involved in determining the trait of interest, based on 
Equation 10.  

This analysis suggests that data from past trials in which a sufficiently 
large number of genotypes (e.g., 𝑛 ~ 175) were tested may be used in GS 
model development. Many breeding programs have a test similar to our 
Home Test (Stage 4.1, Figure 5), which tests approximately 300 lines at 
several locations each year. Such data can be readily used in GS model 
development. To bridge the gap between genomic research and practical 
oat breeding, a joint test among four oat breeding programs in North 
America (North Dakota State University (Dr. Michael McMullen), 
University of Saskatchewan (Dr. Aaron Beattie), Agriculture and Agri-Food 
Canada (AAFC) at Brandon, and AAFC at Ottawa), referred to as ENCORE, 
was started in 2013. Each year approximately 240 new oat breeding lines 
from the four breeding programs were tested at five locations (Fargo ND, 
Saskatoon SK, Brandon MB, Lacombe AB, and Ottawa ON) with two 
replications each. Data from the Ottawa site have already been used in GS 
development for eastern Canada. The phenotypic data from the western 
Canadian locations should be useful for developing GS models for western 
Canada.  

Pathways to Integrate GS in Plant Breeding 

There are two potential GS injection points into the breeding stream 
(Figure 5). One is to start GS before any visual selection (“GS-In1”), and the 
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other is to start GS after the first-year visual selection (“GS-In2”). Some 
believe that breeder’s visual selection is no better than random and would 
like to use GS-In1 to avoid loss of useful genotypes by breeder’s culling. 
However, it is a fact that most lines in the breeding population will 
eventually be discarded and many defective genotypes can be visually 
eliminated with confidence and little cost at Stage 3.1. In addition, Stage 
3.1 is a stage that cannot be skipped because it is necessary to increase seed 
and to obtain DNA samples for genotyping even if no visual selection is to 
be made. If the plants are not grown in “hills” in the field, they will need 
to be grown in pots in a greenhouse. The former costs less and is 
potentially more effective and informative. Currently approximately 90% 
of the initial breeding population is eliminated at Stage 3.1 in our program. 
To reduce possible loss of useful genotypes, a less stringent visual selection 
pressure can be implemented. For example, the elimination rate may be 
reduced to 80%, allowing GS to be applied within the non-culled lines (GS-
In2). The cost for genotyping for GS-In2 is only 10–20% of that for GS-In1. 
Therefore, GS-In2 is considered a more rationale choice at present. GS-In1 
may become a viable choice in the future when the cost of GS is 
dramatically reduced and/or GS prediction becomes extremely accurate. 
In practice, we are currently testing GS on a small scale (2000 lines per 
year) using GS-ln1, with the objective of comparing the success rate of GS 
relative to visual selection at Stage 3.1 without introducing bias of previous 
selection.  

GS-selected lines can be returned to the breeding stream at different 
points (Figure 5), depending on the GS prediction accuracy. If the rate of 
success is 1/60, i.e., if 60 GS-selected lines are needed to identify a superior 
cultivar, then the 2nd year visual selection (Stage 3.2) and the first-year 
yield trials (Stage 4.1) can be bypassed (“GS-Out1”). If the GS prediction is 
1/20 or higher (GS-Out2), then Stages from 3.2 to 4.2 can be bypassed. 
When the prediction accuracy is extremely high (e.g., 1/2), then Stage 3.2 
and all of the yield trials can be bypassed (GS-Out5). The rate of success 
for our visual selections (Stage 3) is approximately 1/150 to 1/200, 
considering that we test 200 to 300 lines in the Home Test, and some of the 
lines are intended to select breeding parents rather than cultivars. 

It is relevant here to emphasize the importance of prediction accuracy 
or selection reliability. The often-cited breeder’s equation (Equation 5) 
suggests that breeding progress is proportional to the selection intensity 
and the selection reliability. What has not been emphasized enough in the 
literature is that the allowable selection intensity is dependent on the 
selection reliability, and a high selection intensity is justified only when 
the selection reliability is high enough to allow it. The proposed rate of 
success may be regarded as an integrated measure of both prediction 
accuracy and selection intensity. A greater prediction accuracy means a 
shorter breeding cycle, less test cost, and greater breeding efficiency 
(Figure 5). 
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GS predicted lines may also be used as parents to start a new breeding 
cycle [9,37]. This is feasible only when the GS prediction accuracy or the 
rate of success is sufficiently high, e.g., >1/10. Also, it should be noted that 
parents used in a cross should not only have high breeding values but 
should also be genetically diverse (Equation 7); the breeding value is only 
one part of the whole picture [44].  

Additional comments on the usefulness of bypassing Stages 3.2 and 4.1 
by GS follow. Visual selection in Stage 3.2 can be fairly cost effective and 
there is little economic advantage to bypass this stage with GS. However, 
visual selection and GS prediction may be used jointly at this stage to make 
more accurate selections. Bypassing the Home Test (Stage 4.1) would be 
highly desirable as this is a large, costly test. However, Home Test is needed 
to generate phenotypic data for GS model development and cannot be 
bypassed until the time when GS model development is considered 
complete. It is difficult to tell when such time will come, however. A 
breeding program has to constantly bring in new germplasm and to 
address emerging environmental and market challenges. Nevertheless, 
selection decisions may be made based on both phenotypic data and GS 
prediction at this stage. As GS prediction becomes more accurate, a greater 
weight can be placed on GS prediction relative to visual selection.  

Current Status of GS Application and Future Plan 

In 2016, 40 oat lines were selected prior to Stage 3.2, based on GS models 
developed on data from the 2015 Home Test and ENCORE conducted at 
Ottawa. These lines, along with lines visually selected at Stage 3.2, were 
entered the 2017 Home Test (Stage 4.1); eight of the GS-selected lines were 
selected and advanced to the 2018 Preliminary Test (Stage 4.2); four of 
them will be further tested in the 2019 Registration Test (Stage 4.3). In 2017, 
60 lines were selected prior to Stage 3.2 based on GS models developed on 
data from the 2015 and 2016 Home Test and ENCORE at Ottawa. These 
lines, along with visually selected lines, were entered the 2018 Home Test 
(Stage 4.1); 14 of these lines were selected and will be advanced to the 2019 
Preliminary Test (Stage 4.2). Some of the GS selected lines were also 
selected visually. In a few years from now, we will be able to see how many 
of the GS-selected lines will outperform visually selected lines and be 
qualified to release as new cultivars. These exercises correspond to the 
“GS-In2GS-Out1” pathway (Figure 5).  

In 2018, 60 lines were selected out of a set of crosses before any visual 
selection (prior to Stage 3.1), based on GS models developed on phenotypic 
data from the 2015 to 2017 Home Test and ENCORE at Ottawa. These lines 
will be compared with 60 visually selected lines from the hill nursery 
(Stage 3.1), from the same crosses, in the 2019 Home Test. Lines that 
survive the test will be advanced and further tested. This GS exercise 
corresponds to the “GS-In1GS-Out1” pathway (Figure 5). This work will 
be repeated in the next four years; each year more GS models from more 
trials will be used.  
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Importantly, in each of these first few years of selection, GS has been 
based on models developed by combining one to several field tests at a 
single test location, Ottawa, in one or two training populations. In future 
years, we intend to invoke multiple GS predictions from multiple training 
populations evaluated in multiple environments (locations and years), 
using the framework described earlier in this paper. GS models will be 
developed for all available location-year combinations in the Home Test, 
plus ENCORE at Ottawa, for eastern Canada. Similar work is being done 
for the oat breeding program at the Brandon Research Development 
Center, whose mandate is to develop oat cultivars for western Canada. 
With time, and as more training data (genotypes, environments, and their 
interactions) are built into the GS models, GS prediction accuracy should 
increase. Conclusive results on GS rate of success will be obtained in the 
next few years, which will allow us to decide the best GS pathway(s) 
(Figure 5). 

CONCLUSIONS 

To successfully integrate GS in a practical breeding program, 
genomicists and conventional plant breeders must speak the same 
language, which are the principles of dealing with GE for a trait and 
unfavorable associations among breeding objectives. An essential link 
between GS and PS is that the breeding values predicted by GS, 𝐺ெ should 
correlate with the genetic main effects, 𝐺  obtained from multi-location 
multi-year trials representing the target ME. This link determines what 
phenotypic data are needed for GS model development and evaluation. 
Conventional selection methods have to resort to indirect selection, 
negative selection, and a long breeding cycle to obtain 𝐺; GS offers the 
opportunity to directly select on 𝐺  through  𝐺ெ  and thereby to 
dramatically shorten the breeding cycle. A pragmatic GS framework was 
proposed for GS model development and application, in coupling with 
routinely conducted breeding trials. A rate of success was defined to 
measure the success of GS and visual selections. Possible pathways of 
integrating GS into a practical breeding program was outlined, and the 
best pathway is dependent on the prediction accuracy or rate of success of 
GS.  
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